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1. Write short notes about: Gama space — Energy state — Energy
levels
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2. Prove the following relation for the occupation number n; due to

Boltzmann distribution n; = Z;e‘ﬁa

Let the number of allowed states associated with the energy ¢; be g;.
Let us first calculate the number of ways of putting n; particles of N
particles in one box, then n, out of N —n; in second, and so on until we
have exhausted all of the particles. The number of ways of choosing n;

particles out of N particles is given by
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and the number of choosing n, out of N—n;y is:
N—-n)!
= =) ")
(N-=n;—n,)In,!
and the number of ways of achieving this arrangement is
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INW=InN!I'+> (nlng; —ninn;!)
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To obtain the most probable distribution, we maximize Eq. (3) with

dN =0:

dInW=>(Ing; —nlnn; —m)Sni =0
|



dInW=>(Ing; —ninn; —=1)én; =0
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but

SN=Y3n; =0 4)
SU:Zz-:iSni =0 (5)

multiply Eqg. (4) by a+1 and Eq. (5) bt — B and add the resulting
equations to each other:

Z(Ingi—nlnni+a—Bsi)8ni=O (6)

Since n; is vary independent,
Ing; —ninn; +o—Peg; =0

or

Ing—i+oc—B8i:0 (7)

1
Solving Eq. (7) for n; gives

N
n; :Egie e



¥. Find the relation between the partition function Z and

thermodynamic functions U, and S.
-------------------------------- Solution -------=--==smemmeme oo

(a) Relation between Z and U

Since

|

differentiate Z with respect to T, holding V constant,
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It follow that

U:NK_I_z(ﬁh’] Z\J (8)
aT )y

and U may be calculated once InZ is known as a function of T and V.

(b) Relation between Z and S
The entropy S is related to the order or distribution of the particles,
through the relation:

S=KInW



but
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Hence
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By using the relation

then
U
S=KInW:K[—NInN+NInZ+—+ NIn N}
KT
U (9)
=NKTIhZ+—
T

and S may be calculated once InZ is known as a function of T and V.



4. Find the relation between Z and U, S for an ideal monatomic gas.
Taking into account that, the partition function for this system is given

27mKT \*'?
byZ=V( v, )

(a) Relation between Z and U

Since

U —NKTZ(aIn Z\J
aT )y

So

InZ:InV+gInT+%In(

(amz} 3
oT ), 2T

So the internal energy has already been established as:

2ntmK
h2

U=3NKT

(b) Relation between Z and S

Since
S=KInW = NK{In NIl Z}
oT
Since
InZ:InV+§InT+%In(2anj
h2
So

Lﬁlnzj 3
oT ), 2T

By substituting we have:



S= NK{InV+%InT+%In(2nTKj+g}
h

5. Discus in details the partition function of a harmonic oscillator.



