جامعة بنها - كلية العلوم - قسم الرياضيات المستوى الثالث (رياضيات - ساعات معتمدة) الفصل الدراسي الأول

يوم الامتحان: الأربعاء 14 / 1 / 2015 م المادة: الأسس الرياضية لنظرية ميكانيكا الكم (M331)

أستاذ المادة : د . / خليل محمد خليل محمد

مدرس بقسم الرياضيات بكلية العلوم صورة من الامتحان+ نموذج إجابته

Faculty of Science Math. Dept. Benha

Third year Math. (Quantum &Statistical) Mechanics

14 / 1 / 2015 Time: 2 hours

Time. 2 nours

Mathematical Foundations of Quantum Theory (M331) questions:

Answer as you can:

	ver as you can.
1.a	Find the adjoint operator \hat{A}^+ if $\hat{A} = \frac{d}{dx}$ defined on L_2 i.e.
	$\hat{A}\varphi(x) = \frac{d}{dx}\varphi(x)$ with the boundary condition $\varphi(\pm\infty) = 0$.
1.b	Show that: the eigenvalues of a unitary operator are complex numbers of unit modulus and its eigenvectors corresponding to unequal eigenvalues are mutually orthogonal?
1.c	A particle of mass μ and energy E approaches a square potential
	barrier $U(x) = 0$, $x < 0$ and $U(x) = U_0$, $x \ge 0$ where $U_0 > 0$ from the
	left. Find the reflection coefficient R if $E < U_0$. Determine x_{eff} ?
2.a	State the postulates of quantum mechanics.
2.b	A particle of mass μ is located in a unidimensional square potential well with impenetrable walls $0 < x < l$. The Hamiltonian of the particle
	comprise a discrete spectrum i.e. $\hat{H}\varphi_n(x) = E_n\varphi_n(x)$ where
	$\varphi_n(x) = \sqrt{\frac{2}{l}}\sin(\frac{n\pi}{l}x), 0 < x < l, E_n = \frac{n^2\pi^2\hbar^2}{2\mu l^2}, n = 1, 2, 3, \dots$
	Find the normed state function $\psi(x,t)$ at $t>0$, if
	$\psi(x,0) = Ax(l-x)$, $0 < x < l$. If at $t = 0$, the energy is measured .
	determine the probability of the particle being in the n^{th} level. Hence calculate the probability for the first three levels?

Look the Statistical Mechanics Exam

Dr. Khalil Mohamed

اجابة السؤال 1.2: Proof: To obtain the adjoint operator, we take the inner product

$$(\hat{A}\phi,\psi) = \int_{-\infty}^{\infty} (\hat{A}\phi(x))^* \psi(x) dx = \int_{-\infty}^{\infty} \frac{d}{dx} \phi(x)^* \psi(x) dx$$
 then by partial integration

let
$$u = \psi(x)$$
 and $dv = \frac{d}{dx}\phi(x)^* dx$ this leads to $du = d\psi(x)$, $v = \phi(x)^*$ then

$$\int_{-\infty}^{\infty} \frac{d}{dx} \phi(x)^* \psi(x) dx = \psi(x) \phi(x)^* \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \phi(x)^* (\frac{d}{dx} \psi(x)) dx$$
. From the boundary condition

$$\phi(\pm \infty) = 0 \quad \text{then} \quad \int_{-\infty}^{\infty} \frac{d}{dx} \phi(x)^* \psi(x) dx = 0 + \int_{-\infty}^{\infty} \phi(x)^* (-\frac{d}{dx} \psi(x)) dx = (\phi, (-\frac{d}{dx}) \psi) = (\phi, \hat{A}^{\dagger} \psi)$$

$$\therefore \hat{A}^+ = -\frac{d}{dx}.$$

إجابة السؤال 1.b:

Proof:

Let \hat{U} be a unitary operator. Let $\hat{U}\psi_i = \lambda_i \psi_i$; $\psi_i \neq 0$ and $\hat{U}\psi_j = \lambda_j \psi_j$; $\psi_j \neq 0$ where

$$\lambda_i \neq \lambda_i$$
 for $i \neq j$. Now

$$(\hat{U}\psi_i, \hat{U}\psi_i) = \lambda_i^* \lambda_i(\psi_i, \psi_i) \tag{i}$$

by definition

$$(\hat{U}\psi_i, \hat{U}\psi_i) = (\psi_i, \psi_i) \tag{ii}$$

from (i) and (ii)

$$(1 - \lambda_i \lambda_j^*)(\psi_j, \psi_i) = 0$$
 (iii)

if
$$i = j$$
 in (iii) then $(1 - \lambda_i \lambda_i^*)(\psi_i, \psi_i) = 0$

Since
$$(\psi_i, \psi_i) \neq 0$$
 then $(1 - \lambda_i \lambda_i^*) = 0 \Rightarrow |\lambda_i|^2 = 1$ $\therefore |\lambda_i| = 1$

Thus the eigenvalues are complex numbers of unit modulus.

if $i \neq j$ in (iii) then $\lambda_i \neq \lambda_j$ by assumption

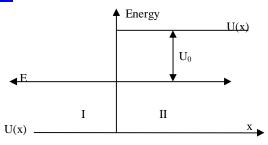
Since
$$(\psi_i, \psi_i) \neq 0$$
 then $(1 - \lambda_i \lambda_i^*) = 0 \Rightarrow |\lambda_i|^2 = 1$ $\therefore |\lambda_i| = 1$

$$\lambda_i \neq \lambda_j \Rightarrow \lambda_i \lambda_j^* \neq \lambda_j \lambda_j^* = \left| \lambda_j \right|^2 = 1 \text{ then } \lambda_i \lambda_j^* \neq 1$$

from (iii)
$$\Rightarrow (\psi_i, \psi_i) = 0$$

Therefore, eigenvectors corresponding to unequal eigenvalues are mutually orthogonal.

جابة السؤال 1.c:



The energy equation or Shrodinger equation my be written as:

$$\left[\frac{d^{2}}{dx^{2}} + \frac{2\mu}{\hbar} (E - U(x))\right] \psi_{E} = 0 \tag{1}$$

Eqn(1) is

$$\psi_{I}'' + k_{0}^{2} \psi_{I} = 0, k_{0} = \frac{1}{\hbar} \sqrt{2\mu E}, x < 0$$

$$\psi_{II}'' - \aleph^{2} \psi_{II} = 0, \aleph = \frac{1}{\hbar} \sqrt{2\mu (U_{0} - E)}, x \ge 0$$
(2)

The general solution of system (2) is

$$\psi_{I}(x) = A \exp(ik_{0}x) + B \exp(ik_{0}x), \qquad x < 0$$

$$\psi_{II}(x) = C \exp(\aleph x) + D \exp(-\aleph x), \qquad x \ge 0$$
(3)

Since $\psi(x)$ has finite modulus for all x, then C must vanish.

Continuity Conditions

$$\psi_{I}(0) = \psi_{II}(0) \Rightarrow A + B = D$$

$$\psi_{I}''(0) = \psi_{II}''(0) \Rightarrow k_{0}A - k_{0}B = i \aleph D$$

$$(4)$$

From (4)

$$B = (\frac{k_0 - i\aleph}{k_0 + i\aleph})A \quad \text{and} \quad D = (\frac{2k_0}{k_0 + i\aleph})A \quad \text{Thus (3) becomes}$$

$$\psi_{E}(x) = A \begin{cases} \exp(ik_{0}x) + (\frac{k_{0} - i\aleph}{k_{0} + i\aleph}) \exp(-ik_{0}x) & x < 0 \\ (\frac{2k_{0}}{k_{0} + i\aleph}) \exp(-i\aleph) & x \ge 0 \end{cases}$$

From the values for A and B with equation (3), one gets

$$J_{inc} = \frac{\hbar k_0}{\mu} |A|^2, \qquad J_{ref} = -\frac{\hbar k_0}{\mu} |B|^2 \qquad \therefore R = \left| \frac{B}{A} \right|^2 = \left| \frac{k_0 - i \aleph}{k_0 + i \aleph} \right|^2 = 1$$

Thus for energy region all incident particles are reflected.

And for finding the effective penetration depth $x_{\it eff}$ in this case

$$-2\aleph x_{eff} = \ln(\frac{1}{e}) = -1$$
 $\Rightarrow x_{eff} = \frac{1}{2\aleph}.$

إجابة السؤال 2.a:

*The postulates of quantum mechanics are:

- 1)-Postulate I: Every physical state of a dynamical system (a particle) is represented at a given instant of time t by normed vector $|\psi\rangle_t$ in H. It is assumed that the state vector contains all the information which one can know about the state of the system at that instant of time. ψ and $e^{i\delta}\psi$ where $\delta^* = \delta$ represent the same physical state.
- 2)- Postulate II: To every dynamical variable A there corresponds an observable \hat{A} . The observable \hat{x} and \hat{p} must satisfy $[\hat{x}, \hat{p}] = i\hbar$. The rules for constructing the observable \hat{A} corresponding to the dynamical variable A, in the x-rep are as follows:

$$(i)x \rightarrow \hat{x} = x, t \rightarrow \hat{t} = t, p \rightarrow \hat{p} = -i\hbar \frac{d}{dx}$$

$$(ii)A(x, p, t) \rightarrow \hat{A} = A(x, -i\hbar \frac{d}{dx}, t).$$

3)- Postulate III: If a particle is in state $|\psi\rangle_t$, a measurement of a dynamical variable A which is represented by the observable \hat{A}

$$\hat{A}|\varphi_n\rangle = a_n|\varphi_n\rangle, \langle \varphi_n|\varphi_n\rangle = \delta_{nm}, \hat{1}_a = \sum_i |\varphi_i\rangle\langle \varphi_i| \text{ will}$$

*yield one of the eigenvalues a_i with probability

$$\rho_{\psi}(a_{i}) = \frac{\left|\left\langle \varphi_{i} \left| \psi \right\rangle \right|^{2}}{\left\langle \psi \left| \psi \right\rangle \right\rangle}$$

- ** If the result of measurement is a_k , then the state of the system will change from $|\psi\rangle$ to $|\varphi_k\rangle$ as a result of measurement.
- 4)- Postulate IV: The state function $\psi(x,t)$ describing the state of a dynamical system whose Hamiltonian is \hat{H} obeys the following" Schrodinger time-dependent" equation

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = \hat{H} \psi(x,t)$$

إجابة السؤال 2.b:

For finding $\psi(x,t)$ then

$$\psi(x,t) = \sum_{n} \exp(-iE_{n}t/\hbar)\phi_{n}(x) < \phi_{n}(x) | \psi(x,0) >$$

$$\therefore < \phi_{n}(x) | \psi(x,0) > = \int_{0}^{l} \phi^{*}_{n}(x)\psi(x,0)dx = \sqrt{\frac{60}{l^{6}}} \int_{0}^{l} \sin(\frac{n\pi}{l}x)x(l-x)dx$$

$$= \sqrt{\frac{60}{l^{6}}} \left[\int_{0}^{l} lx \sin(\frac{n\pi}{l}x)dx - \int_{0}^{l} x^{2} \sin(\frac{n\pi}{l}x)dx \right]$$

$$\sqrt{\frac{60}{l^{6}}} \left[\frac{-2l^{3}}{(n\pi)^{3}} (\cos(\frac{n\pi}{l}x))|_{0}^{l} \right] = \frac{2\sqrt{60}}{(n\pi)^{3}} [1 - (-1)^{n}]$$

$$\therefore < \phi_{n}(x) | \psi(x,0) > = \begin{cases} \frac{4\sqrt{60}}{(n\pi)^{3}} & n = 1,3,5,\dots,odd \\ 0 & n = 0,2,4,\dots,even \end{cases}$$

$$\therefore \psi(x,t) = \sum_{n} \exp(-iE_{n}t/\hbar)\phi_{n}(x) \cdot \frac{4\sqrt{60}}{(n\pi)^{3}} & 0 < x < l \quad , n = 1,3,5,\dots$$

$$= \frac{8\sqrt{30}}{\pi^{3}} \sum_{n} \frac{1}{n^{3}} \exp(-iE_{n}t/\hbar) \sin(\frac{n\pi}{l}x). \quad 0 < x < l \quad , n \text{ odd}$$

For finding the probability for particles that exist in the n level

$$\begin{split} \rho_{\psi(x,0)}(E_n) &= \left| <\phi_n(x) \left| \psi(x,0) \right|^2 = \left| \int_0^l \phi_n^*(x) \psi(x,0) dx \right|^2 \\ &= \left| \int_0^l \sqrt{\frac{2}{l}} \sin(\frac{n\pi}{l} x) \cdot \sqrt{\frac{30}{l^5}} (xl - x^2) dx \right|^2 = \frac{240}{(n\pi)^6} \left| 1 - (-1)^n \right|^2, \ n \ odd \\ &= \begin{cases} \frac{960}{(n\pi)^6} & n = 1,3,5,.... \\ 0 & n = 0,2,4,..... \end{cases} \\ \rho_{\psi(x,0)}(E_1) &= \frac{960}{\pi^6}, \qquad \rho_{\psi(x,0)}(E_2) = 0, \qquad \rho_{\psi(x,0)}(E_3) = \frac{960}{(3\pi)^6}. \end{split}$$
