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1. Prove the following relation for the occupation number n; due to

Boltzmann distribution n; = de‘ﬁg

Let the number of allowed states associated with the energy ¢; be g;.
Let us first calculate the number of ways of putting n; particles of N
particles in one box, then n, out of N —n; in second, and so on until we
have exhausted all of the particles. The number of ways of choosing n;

particles out of N particles is given by
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and the number of choosing n, out of N—n;y is:

_ (N—ny)! )
(N—n;—ny)In,!

2

and the number of ways of achieving this arrangement is
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To obtain the most probable distribution, we maximize Eq. (3) with

dN=0:
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but
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multiply Eq. (4) by o +1 and Eqg. (5) bt — B and add the resulting

equations to each other:

> (Ing; —ninn; + o —Be;)dn; =0 (6)



Since n; is vary independent,
Ing; —nInn; + o —Beg; =0
or
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Solving Eq. (7) for n; gives
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2. Find the relation between the partition function Z and
thermodynamic functions U, and S.

-------------------------------- Solution -------=--==s=emmmmm oo
(a) Relation between Z and U

Since
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differentiate Z with respect to T, holding V constant,
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It follow that

U:NKTz(GIn Z\J (8)
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and U may be calculated once InZ is known as a function of T and V.

(b) Relation between Z and S
The entropy S is related to the order or distribution of the particles,
through the relation:

S=KInW



but
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By using the relation

then
U
S=KInW:K[—NInN+NInZ+—+ NIn N}
KT
U (9)
=NKTIhZ+—
T

and S may be calculated once InZ is known as a function of T and V.



3. Debye treated with crystal as a continuous elastic medium and his

expression of C,, is a good approximation to the Duling-Petit law.

Discuss the previous paragraph.

The specific heat depends on the temperature as in the figure. At high

temperature the value of C, is close to 3R
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In the Debye model, the frequency of the lattice vibration covrs a wide
range of values. The lowest frequency in the Debye model is v =0 and the

highest allowed is v, such that the integral of g(v)dv from 0 to v,

equals 3N, see Fig. (2)



g(v)

Thus
jg(v) dv=3N
0

By using the equation

Where v, is called Debye frequency. In terms of v the function g(v) is

obtained as
g(v):gv2 0<v<vp
Vb

This summarizes the Debye theory of crystals.



4. Discus in details the internal energy and specific heat for harmonic

oscillator

Let us calculate U and C,, from the quantum partition function for

monatomic crystal when lattice points free to move in one dimension
only
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So the energy U of N simple harmonic vibrators is:
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Therefore, the average energy per vibrator is
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Thus for a given oscillator the internal energy is a function of temperature

only. The heat capacity C,, is
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The following curves are graphs of the internal energy U and of the heat

capacity C,, divided by NK as functions of T/®
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