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 دراسات عميا )تمهيدي ماجستير(      جامعة بنها
 (متقدمة مادة )إحصائية      العمومكمية 

 تساعا 3الزمن       6102دور يناير 
 د./ صلاح عيد إبراهيم حمزة

 جوامدشعبة الفيزياء ال ورقة كاممة
 

1. Discus in details the black body radiation phenomena 

-------------------------------------- Solution -------------------------------------- 

A blackbody refers to an opaque object that emits thermal radiation. A 

perfect blackbody is one that absorbs all incoming light. If heated to a 

high temperature, a blackbody will begin to glow with thermal radiation. 

An approximation to a perfect blackbody may be obtained by a 

hollow sphere having a small opening 

with the inside walls having a rough, 

dull surface as shown in Fig. (11). 

The radiation enters or leaves the 

cavity through a small hole. Part of 

the radiation entering the cavity will 

be absorbed by its walls and part 

reflected. Only a very small part of 

the reflected radiations escape 

through the hole, so that after many internal reflections nearly all the 

radiation is absorbed and the body approximates a blackbody. 

 At the beginning of the 20
th

 century, scientists Lord Rayleigh, an 

Max Plank studied the black body radiation using such a device. After 

much work, Planck was able to describe the intensity of light emitted by a 

blackbody as a function of wavelength. Planck's work on blackbody is 

one the areas of physics that led to the foundation of the wonderful 

Fig. (11): An approximation of 

 a perfect absorber (Blackbody) 
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science of Quantum Mechanics, but that is unfortunately beyond the 

scope of this course.  

 Planck was found that the temperature of a blackbody increases, 

the total amount of light emitted per second increases, and the wavelength 

of the spectrum's peak shifts to the bluer colors, see Fig. (12). For 

example, an iron bar becomes orange-red when heated to high 

temperatures and its color shifts toward blue and white as it is heated 

further. 

 

 

The Black body radiations can be considered as the photon gas. Photons 

are taken as bosons and they are obey BE statistics 
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Fig. (12): The wavelength of the spectrum's peak shifts to the bluer colors 
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We can write 
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Since the photon has no rest mass, so we can write 
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The energy per unit volume, energy density, is 

 h
V
dnd         (8) 

So 







d
ec

hd
KTh 1

8
/

3

3
      (9) 

Which represents Planck's radiation law 

Wien's Law 

 Wilhelm Wien quantified the relationship between blackbody 

temperature and the wavelength of the spectral peak with the following 

equation: 

 29.0Tmax          (9) 

where T is the temperature in Kelvin. Wien's law states that the 

wavelength of maximum emission from a blackbody is inversely 

proportional to its temperature. This makes sense; shorter wavelength 
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light corresponds to higher energy photons, which you would expect from 

a higher temperature object. 

 

 Stefan-Botzmann's Law 

 It was mentioned at the beginning that the quantity of radiation 

emitted by a body depends on its temperature. In fact, the total radiation 

emitted by a body increases very rapidly as the temperature is raised.  

 According to Stefan-Boltzmann, the rate of emission of radiation 

from a black body is directly proportional to the fourth power of its 

absolute temperature. So the rate at which energy leaves the black body 

is 

 
4T

dt

dQ
                  (10) 

where   is the radiation power per unit area and,  is a universal 

constant called the Stefan-Boltzmann constant which has the value 

428 Km/watt1067.5  . 

If the body is not perfect black and its emissivity is  , then 

4T
dt

dQ
                          (11) 
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2. Find the relation between the partition function Z and 

thermodynamic functions U, S, F and P. 

-------------------------------------- Solution -------------------------------------- 

(a) Relation between Z and U 

Since 
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2

KT/
i

i
i

i
ii

2

KT/

i
ii2

KT/

i
2

i
i

V

NKT

ZU

eg
n

n

KT

1

eg
KT

1

e
KT

g
T

Z

i

i

i
















 




























 

It follow that 
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and U may be calculated once lnZ is known as a function of T and V. 

 

(b) Relation between Z and S 

 The entropy S is related to the order or distribution of the particles, 

through the relation: 
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and S may be calculated once lnZ is known as a function of T and V. 

 

 

(c) Relation between Z and F 

The property of the system is defined by its Helmholtz function F which is 

given by: 

TSUF   

This equation can be evaluated in terms of the partition function Z. By 

using the entropy S, Eq. (8), we get 
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and F may be calculated once lnZ is known as a function of T and V. 
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(d) Relation between Z and P 

Since 
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then 
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From the first law of thermodynamics: 
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and P may be calculated once lnZ is known as a function of T and V. 

 



 8 

3. Discus the classical theory interpretation for Duliong-Petit law of 

specific heat  

-------------------------------------- Solution -------------------------------------- 

The specific heat depends on the temperature as in the figure. At high 

temperature the value of vC  is close to 3R  

 

In classical theory the average energy is 
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And the energy per mole is 
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This is in agreement with experiment at high temperature, but it fails 

completely at low temperatures. 
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4. Prove the following relation for the occupation number in  due to 

Bose-Einstein Statistics 
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-------------------------------------- Solution -------------------------------------- 

 

Let the number of allowed states associated with the energy i  be ig . 

Let us first calculate the number of ways of putting 1n  particles of N 

particles in one box, then 2n  out of 1nN   in second, and so on until we 

have exhausted all of the particles. The number of ways of choosing 1n  

particles out of N particles is given by  
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To obtain the most probable distribution, we maximize Eq. (3) with 

0dN  : 
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multiply Eq. (4) by 1  and Eq. (5) bt B  and add the resulting 
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