جامعة بنها - كلية العلوم - قسم الرياضيات المستوى الثالث (شعبة رياضيات) الفصل الدراسي الأول

يوم الامتحان: الخميس 21 / 1 / 2016 م المادة: الأسس الرياضية لنظرية ميكانيكا الكم (M331) أستاذ المادة: د. / خليل محجد خليل محجد مدرس بقسم الرياضيات بكلية العلوم

صورة من الامتحان+ نموذج إجابته

Faculty of Science

Third level(Math.)

21 / 1 / 2016 Time: 2 hours

Math. Department (Quantum & Statistical) Mechanics M331

<u>First Part</u>: Mathematical Foundations of Quantum Theory (one hour)

Answer the following questions:	
1.a	Show that: the eigenvalues of a unitary operator are complex numbers
	of unit modulus and its eigenvectors corresponding to unequal
	eigenvalues are mutually orthogonal? (10 Marks)
1.b	State the postulates of quantum mechanics. (10 Marks)
2.a	Prove that: $\underline{j}(x;t) = (\frac{\hbar}{\mu}) \operatorname{Im}(\psi^* \frac{\partial \psi}{\partial x})$ where $\underline{j}(x;t)$ is the probability
	(particle) current density vector and ψ satisfy Schrödinger time
	dependent equation. (10 Marks)
2.b	A particle of a mass μ is located in a unidimensional square potential
	well with absolutely impenetrable walls $(0 < x < l)$. Find
	(a) The energy eigenvalues and corresponding normalized
	eigenfunctions of the particle.
	(b) The probability of the particle with the lowest energy (ground
	state) being within the region $(\frac{l}{3} < x < \frac{2l}{3})$. (10 Marks)

Look the Statistical Mechanics Exam

Dr. Khalil Mohamed

إجابة السؤال 1.a:

Proof:

Let \hat{U} be a unitary operator, where $\hat{U}\psi_i = \lambda_i\psi_i$; $\psi_i \neq 0$ and $\hat{U}\psi_j = \lambda_j\psi_j$; $\psi_j \neq 0$. Let

$$\lambda_i \neq \lambda_j$$
 for $i \neq j$. Now

$$(\hat{U}\psi_i, \hat{U}\psi_i) = \lambda_i^* \lambda_i(\psi_i, \psi_i)$$
 (i)

By definition

$$(\hat{U}\psi_j, \hat{U}\psi_i) = (\psi_j, \psi_i) \tag{ii}$$

from (i) and (ii)

$$(1 - \lambda_i \lambda_i^*)(\psi_i, \psi_i) = 0$$
 (iii)

then
$$i = j$$
 in (iii) if $(1 - \lambda_i \lambda_i^*)(\psi_i, \psi_i) = 0$

Since
$$(\psi_i, \psi_i) \neq 0$$
 then $(1 - \lambda_i \lambda_i^*) = 0 \Rightarrow |\lambda_i|^2 = 1$ $\therefore |\lambda_i| = 1$

Thus the eigenvalues are complex numbers of unit modulus.

by assumption $\lambda_i \neq \lambda_j$ then $i \neq j$ in (iii) if

Since
$$(\psi_i, \psi_i) \neq 0$$
 then $(1 - \lambda_i \lambda_i^*) = 0 \Rightarrow |\lambda_i|^2 = 1$ $\therefore |\lambda_i| = 1$

$$\lambda_i \neq \lambda_j \Rightarrow \lambda_i \lambda_j^* \neq \lambda_j \lambda_j^* = |\lambda_j|^2 = 1 \text{ then } \lambda_i \lambda_j^* \neq 1$$

from (iii)
$$\Rightarrow (\psi_i, \psi_i) = 0$$

Therefore, eigenvectors corresponding to unequal eigenvalues are mutually orthogonal.

إ<u>جابة السؤال 1.b:</u> *The postulates of quantum mechanics are:

- 1)-Postulate I: Every physical state of a dynamical system (a particle) is represented at a given instant of time t by normed vector $|\psi\rangle$, in H. It is assumed that the state vector contains all the information which one can know about the state of the system at that instant of time. ψ and $e^{i\delta}\psi$ where $\delta^* = \delta$ represent the same physical state.
- 2)- Postulate II: To every dynamical variable A there corresponds an observable \hat{A} . The observable \hat{x} and \hat{p} must satisfy $[\hat{x}, \hat{p}] = i\hbar$. The rules for constructing the observable \hat{A} corresponding to the dynamical variable A, in the x-rep are as follows:

$$(i)x \rightarrow \hat{x} = x, t \rightarrow \hat{t} = t, p \rightarrow \hat{p} = -i\hbar \frac{d}{dx}$$

$$(ii)A(x, p, t) \rightarrow \hat{A} = A(x, -i\hbar \frac{d}{dx}, t).$$

3)- Postulate III: If a particle is in state $|\psi\rangle$, a measurement of a dynamical variable A which is represented by the observable \hat{A} and

$$\hat{A}|\varphi_n\rangle = a_n|\varphi_n\rangle, \ \langle \varphi_n|\varphi_n\rangle = \delta_{nm}, \ \hat{1}_a = \sum_i |\varphi_i\rangle\langle \varphi_i| \ \text{will}$$

*yield one of the eigenvalues a_i with probability

$$\rho_{\psi}(a_i) = \frac{\left|\left\langle \varphi_i \left| \psi \right\rangle \right|^2}{\left\langle \psi \left| \psi \right\rangle}$$

** If the result of measurement is a_k , then the state of the system will change from $|\psi\rangle$ to $|\varphi_k\rangle$ as a result of measurement.

4)- Postulate IV: The state function $\psi(x,t)$ describing the state of a dynamical system obeys the following" Schrodinger time-dependent" equation whose Hamiltonian \hat{H} is

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = \hat{H} \psi(x,t)$$

Probability (particle) current density vector j(x;t)

The probability that a particle is inside the interval (x_1, x_2) at time t is:

$$\int_{x_{1}}^{x_{2}} \rho(x,t) dx = \int_{x_{1}}^{x_{2}} \psi^{*}(x,t) \psi(x,t) dx$$

The rate of change of probability for the particle to be inside (x_1, x_2)

$$j(x_1,t) - j(x_2,t) = \frac{d}{dt} \int_{x_1}^{x_2} \rho(x,t) dx = \frac{d}{dt} \int_{x_1}^{x_2} \psi^*(x,t) \psi(x,t) dx$$
(1)
$$= \int_{x_1}^{x_2} \frac{\partial}{\partial t} (\psi^*(x,t) \psi(x,t)) dx = \int_{x_1}^{x_2} (\psi^* \frac{\partial \psi}{\partial t} + \frac{\partial \psi^*}{\partial t} \psi) dx$$

Since
$$\hat{H}\psi = i\hbar \frac{\partial \psi}{\partial t}$$
 and $(\hat{H}\psi)^* = -i\hbar \frac{\partial \psi^*}{\partial t}$, then

$$\frac{\partial \psi}{\partial t} = \frac{i}{\hbar} \left[\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} - U(x) \right] \psi \text{ and } \frac{\partial \psi^*}{\partial t} = -\frac{i}{\hbar} \left[\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} - U(x) \right] \psi^*; U^* = U$$

From which
$$\psi^* \frac{\partial \psi}{\partial t} + \frac{\partial \psi^*}{\partial t} \psi = \frac{i\hbar}{2\mu} (\psi^* \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi^*}{\partial x^2} \psi)$$
. Substituting into (1)

$$j(x_{1},t) - j(x_{2},t) = \frac{i\hbar}{2\mu} \int_{x_{1}}^{x_{2}} (\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}} - \frac{\partial^{2} \psi^{*}}{\partial x^{2}} \psi) dx = \frac{i\hbar}{2\mu} \int_{x_{1}}^{x_{2}} \frac{\partial}{\partial x} (\psi^{*} \frac{\partial \psi}{\partial x} - \frac{\partial \psi^{*}}{\partial x} \psi) dx$$

$$= \frac{i\hbar}{2\mu} (\psi^{*} \frac{\partial \psi}{\partial x} - \frac{\partial \psi^{*}}{\partial x} \psi) \Big|_{x_{1}}^{x_{2}}$$
(2)

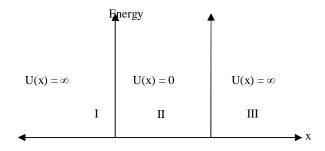
From (2)

$$j(x,t) = -\frac{i\hbar}{2\mu} \left(\psi^* \frac{\partial \psi}{\partial x} - \frac{\partial \psi^*}{\partial x} \psi \right)$$

$$\therefore \quad j(x,t) = \left(-\frac{i\hbar}{2\mu} \right) (2i) \operatorname{Im} \left(\psi^* \frac{\partial \psi}{\partial x} \right) = \left(\frac{\hbar}{\mu} \right) \operatorname{Im} \left(\psi^* \frac{\partial \psi}{\partial x} \right)$$
(3)

إجابة السؤال 2.b:

Number (a)



The energy equation or Shrodinger equation may be written as:

$$\left[\frac{d^{2}}{dx^{2}} + \frac{2\mu}{\hbar}(E - U(x))\right]\psi_{E} = 0 \tag{1}$$

According the potential regions, equation (1) becomes

$$\psi_{I}'' = 0,$$
 $\psi_{II}'' + k^{2}\psi_{II} = 0,$
 $k = \frac{1}{\hbar}\sqrt{2\mu E},$
 $0 < x < l$
 $l < x < \infty$

$$1 < x < \infty$$

The general solution of system (2) is

$$\psi_{II}(x) = A\sin(kx) + B\cos(kx), \qquad 0 < x < l\}$$
(3)

Continuity Conditions

$$\psi_{I}(0) = \psi_{II}(0) \Rightarrow 0 = A \sin(0) + B \cos(0) \Rightarrow B = 0.
\psi_{II}''(l) = \psi_{III}''(l) \Rightarrow A \sin(kl) = 0$$
(4)

For the non-trivial solution $A \neq 0 \Rightarrow \sin(kl) = 0 \Rightarrow kl = n\pi$; n = 0,1,2,...

$$k = \frac{n\pi}{l}; \quad n = 0,1,2,\dots \qquad \text{then } \frac{1}{\hbar}\sqrt{2\mu E} = \frac{n\pi}{l} \implies \frac{2\mu E_n}{\hbar^2} = \frac{n^2\pi^2}{l^2}$$

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2\mu l^2}$$
; $n = 1, 2, 3, ...$ is the eigenvalues.

$$\psi_E(x) = A \sin(\frac{n\pi}{l}x)$$
 ; $n = 1, 2, 3,$ (5)

And the normed state is

$$\int_{0}^{l} |A|^{2} \sin^{2}(\frac{n\pi}{l}x) dx = 1 \Rightarrow \frac{|A|^{2}}{2} \int_{0}^{l} (1 - \cos^{2}(\frac{n\pi}{l})) dx = \frac{|A|^{2}}{2} (x - \frac{l}{2n\pi} \sin(\frac{2n\pi}{l}x)) \Big|_{0}^{l} \Rightarrow A = \sqrt[2]{\frac{l}{l}}$$

$$\psi_E(x) = \sqrt{\frac{2}{l}} \sin(\frac{n\pi}{l}x)$$
 ; $n = 1, 2, 3, ...$

0 < x < l is the normalized eigenfunctions

Number (b)

$$\psi_E(x) = \sqrt{\frac{2}{l}} \sin(\frac{n\pi}{l}x)$$
 ; $n = 1, 2, 3, ...$ $0 < x < l$

In case of ground state
$$n = 1$$
, then $\psi_E(x) = \sqrt{\frac{2}{l}} \sin(\frac{\pi}{l}x)$ $0 < x < 1$

And the probability that the particle is inside the interval $(\frac{l}{3} < x < \frac{2l}{3})$ become

$$\int_{\frac{l}{3}}^{\frac{2l}{3}} \rho(x)dx = \int_{\frac{l}{3}}^{\frac{2l}{3}} \psi^*(x)\psi(x) dx = \frac{2}{l} \int_{\frac{l}{3}}^{\frac{2l}{3}} \sin^2(\frac{\pi}{l}x) dx = \frac{2}{l} \cdot \frac{1}{2} \int_{\frac{l}{3}}^{\frac{2l}{3}} (1 - \cos(\frac{2\pi}{l}x)) dx$$
$$= \frac{1}{3} + \frac{\sqrt{3}}{2\pi}.$$
