

جامعة بنها - كلية العلوم - قسم الرياضيات

لطلاب المستوى الثاني

يوم الامتحان: السبت ١٦ / ١ / ٢٠١٦ م

المادة: رياضيات متقطعة (٢٢٥ ر)

الممتحن: د . / محمد السيد عبدالعال عبدالغنى

مدرس بقسم الرياضيات بكلية العلوم

اسئله + نموذج إجابه

ورقة كاملة

رياضيات متقطعة (٢٢٥ ر) لطلاب المستوى الثاني

Answer the following questions: (80 marks) (الدرجة الكلية ٨٠ درجة الكلية ١٠ درجة الكلية ١٠ درجة) السؤال الأول (35 درجة)

- 1- Let $A = P\{1,2,3\}$, the power set of $\{1,2,3\}$ and a Rbif and only if $a \subseteq b$ be a relation on A. Write down its binary matrix. Determine which of the properties, reflexive, symmetric, transitive, the relation R is satisfied.
- 1- State the converse, inverse and contrapositive of the proposition: 'If it's not Sunday then the supermarket is open until midnight'.
- **2-** Let A, B, C are sets, prove that:
 - (A-C)-(B-C)=(A-C)-B
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. П.
- 3- For any propositions p, q, r, Prove that: $(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$.

Question 2.

السوال الثاني (25 درجة)

- 1. A relation R on $Z^+ \times Z^+$ is defined by (m,n)R(p,q) if and only if m+q=n+p. Show that R is an equivalence relation and describe the equivalence class of (2,1).
- 2. **draw** diagram to represent the graph whose adjacency matrix is given below. **Write** down the degree of each vertex, and state the graph is (a) simple; (b) regular; (c) Eulerian.

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 & 1 \\ 2 & 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 2 & 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

3. **Define** a Boolean algebra $(B, \oplus, *, \bar{}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that**: $(\overline{b_1 * b_2}) = \overline{b_1} \oplus \overline{b_2}.$

جامعة بنها كلية السعلوم قسم الرياضيات

Question 3.

السؤال الثالث (20 درجة):

- 1. **Define** *Hamiltonian cycle*, *r- regular* graph, a *connected graph G*, and **how** can you determine from its adjacency matrix, whether or not *G* is *Eulerian*.
- 2. Show the following function is a bijection and find its inverse:

$$f: R \to R, f(x) = (5x-3)^3 \ \forall x \in R.$$

3. **Define** a switching function for the following system of switches:

4. **Design** a logic network for the following so that the output is described by the following Boolean expression: $(x_1 \oplus x_2)(\overline{x_1} \oplus \overline{x_2})$.

انتعت أسئلة

	•	
	• • • • • • • • • • • • • • • • • • • •	

مع أطيب تمنياتي بالتوفيق والنجاح د. محمد السيد عبدالعال

نموذج اجابه لأمتحان رياضيات متقطعة (٢٢٥ ر) لطلاب المستوى الثاني (١٢٥ و) الدرجة الكلية ٨٠ درجة)

اجابة السؤال الأول (٣٥ درجة) :-

2- Let $A = P\{1,2,3\}$, the power set of $\{1,2,3\}$ and a *Rbif and only if* $a \subseteq b$ be a relation on A. Write down its binary matrix. Determine which of the properties, reflexive, symmetric, transitive, the relation R is satisfied.

$$A = \begin{pmatrix} \phi & \{1\} & \{2\} & \{3\} & \{1,2\} & \{1,3\} & \{2,3\} & \{1,2,3\} \\ \phi & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{1\} & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ \{2\} & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ \{3\} & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ \{1,2\} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \{1,3\} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ \{2,3\} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ \{1,2,3\} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

R is reflexive, anti-symmetric, and transitive.

3- State the *converse*, *inverse* and *contrapositive* of the proposition: 'If it's not Sunday then the supermarket is open until midnight'.

لحـــــل

We define: p: it's not Sunday

q: the supermarket is open until midnight

so that:

 $p \rightarrow q$: If it's not Sunday then the supermarket is open until midnight'.

Converse

: $q \rightarrow p$: If the supermarket is open until midnight' then it's not Sunday.

Inverse

: $\sim p \rightarrow \sim q$: If it's Sunday then the supermarket is not open until midnight'.

سامعة بنسها كلية السعلوم سم الرياضيات

Contrapositive

: $\sim q \rightarrow \sim p$: If the supermarket is not open until midnight then it's Sunday.

4- Let A, B, C are sets, prove that:

I.
$$(A-C)-(B-C)=(A-C)-B$$

II.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

الحال

$$(A-C)-(B-C) = (A \cap \overline{C}) - (B \cap \overline{C}) = (A \cap \overline{C}) \cap \overline{(B \cap \overline{C})}$$

$$= (A \cap \overline{C}) \cap (\overline{B} \cup \overline{C}) = (A \cap \overline{C}) \cap (\overline{B} \cup C)$$

$$= [(A \cap \overline{C}) \cap \overline{B}] \cup [(A \cap \overline{C}) \cap C]$$

$$= [(A-C)-B] \cup \phi = (A-C)-B$$

$$II A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (B \cap C) \Leftrightarrow \{x \in A \lor x \in (B \cap C)\}$$

$$\Leftrightarrow \{x \in A \lor [x \in B \land x \in C)\}$$

$$\Leftrightarrow \{[x \in A \lor x \in B] \land [x \in A \lor x \in C]\}$$

$$\Leftrightarrow \{[x \in (A \cup B)] \land [x \in (A \cup C)]\}$$

$$\Leftrightarrow \{x \in [(A \cup B) \cap (A \cup C)\}$$

Then
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

4. For any propositions p, q, r, **Prove that:** $(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$..

<u>p</u>	<u>q</u>	<u>r</u>	$p \leftrightarrow q$	$(p \leftrightarrow q) \leftrightarrow r$	$q \leftrightarrow r$	$p \leftrightarrow (q \leftrightarrow r)$
1	1	1	1	1	1	1
1	1	0	1	<u>0</u>	0	<u>0</u>
1	0	1	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
1	0	<u>0</u>	<u>0</u>	1	1	1

جامعة بنها كلية السعلوم قسم الرياضيات

				•		•
<u>U</u>	<u>I</u>	1	<u>U</u>	<u>U</u>	1	<u>U</u>
<u>0</u>	1	<u>0</u>	<u>0</u>	1	<u>0</u>	<u>1</u>
<u>0</u>	<u>0</u>	1	1	1	<u>0</u>	1
0	0	<u>0</u>	1	<u>0</u>	1	<u>0</u>

Thus
$$(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$$

أجابة السؤال الثاني (25 درجة) :-

1. A relation R on $Z^+ \times Z^+$ is defined by (m,n)R(p,q) if and only if m+q=n+p. Show that R is an equivalence relation and describe the equivalence class of (2,1).

For all positive integers a and b, a + b = b + a, so (a, b) R (a, b) for every $(a, b) \in A$, Therefore R is reflexive.

R is symmetric since if (a, b) R (c, d) then a + d = b + c which implies that c + b = d + a, so (c, d) R (a, b).

To show that R is transitive, suppose (a, b) R (c, d) and (c, d) R (e, f). This means that a + d = b + c and c + f = d + e.

2. **draw** diagram to represent the graph whose adjacency matrix is given below. **Write down** the degree of each vertex, and **state** the graph is (a) *simple*; (b) *regular*; (c) *Eulerian*.

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 2 & 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

الحـــل

نموذج اجابة امتحان رياضيات متقطعة (٢٢٥ ر)

جـــامعة بنــــها كلـية الـــــعلوم قسم الرياضيات

the graph is not simple; not regular; not Eulerian.

3. **Define** a Boolean algebra $(B, \oplus, *, \bar{}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that:** $(\overline{b_1 * b_2}) = \overline{b_1} \oplus \overline{b_2}$.

Boolean algebra consists of a set *B* together with three operations defined on that set. These are:

- (a) a binary operation denoted by \bigoplus referred to as the **sum**;
- (b) a binary operation denoted by * referred to as the **product**;
- (c) an operation which acts on a single element of B, denoted by -, where, for any element $b \in B$, the element $b \in B$ is called the

complement of b^- (An operation which acts on a single member of a set S and which results in a member of S is called a **unary operation**.)

The following axioms apply to the set B together with the operations \bigoplus , * and - .

B1. Distinct identity elements belonging to B exist for each of the binary operations \bigoplus and * and we denote these by $\mathbf{0}$ and $\mathbf{1}$ respectively. Thus we have

$$b \oplus \mathbf{0} = \mathbf{0} \oplus b = b$$

 $b * \mathbf{1} = \mathbf{1} * b = b$ for all $b \in B$.

for all $a, b, c \in B$.

$$(a * b) * c = a * (b * c)$$
$$(a \bigoplus b) \bigoplus c = a \bigoplus (b \bigoplus c)$$

- B2. The operations \bigoplus and * are associative, that is
- B3. The operations \bigoplus and * are commutative, that is

$$a \oplus b = b \oplus a$$

$$a * b = b * a$$
 for all $a, b \in B$.

B4. The operation \oplus is distributive over * and the operation * is

جامعة بنسها كلية السعلوم نسم الرياضيات

distributive over (1), that is

$$a \bigoplus (b * c) = (a \bigoplus b) * (a \bigoplus c)$$
$$a * (b \bigoplus c) = (a * b) \bigoplus (a * c) \text{ for all } a, b, c \in B.$$

B5. For all $b \in B$, $b \oplus .b = 1$ and b * .b = 0.

$$(b_1 \bigoplus b_2) \bigoplus (\overline{b_1} * \overline{b_2}) = [(b_1 \bigoplus b_2) \bigoplus \overline{b_1}] * [(b_1 \bigoplus b_2) \bigoplus \overline{b_2}]$$
 (axiom B4)

$$= [\overline{b_1} \bigoplus (b_1 \bigoplus b_2)] * [(b_1 \bigoplus b_2) \bigoplus \overline{b_2}]$$
 (axiom B3)

$$= [(\overline{b_1} \bigoplus b_1) \bigoplus b_2] * [b_1 \bigoplus (b_2 \bigoplus \overline{b_2})]$$
 (axiom B2)

$$= (1 \bigoplus b_2) * (b_1 \bigoplus 1)$$
 (axiom B5)

$$= 1 * 1$$
 (theorem 9.4)

$$= 1$$
 (axiom B1).

We have proved that $(b_1 \oplus b_2) \oplus \overline{b_1} * \overline{b_2} = 1$ so that $\overline{b_1} * \overline{b_2}$ is the complement of $b_1 \oplus b_2$, i.e. $(b_1 \oplus b_2) = \overline{b_1} * \overline{b_2}$.

That $(b_1 * b_2) = \overline{b_1} \bigoplus \overline{b_2}$ follows from the duality principle.

أجابة السؤال الثالث (20 درجة):

1. **Define** *Hamiltonian cycle*, *r- regular* graph, a *connected graph G*, and **how** can you determine from its adjacency matrix, whether or not *G* is *Eulerian*.

الحـــــل

A graph is connected if, given any pair of distinct vertices, there exists a path connecting them.

A Hamiltonian cycle in a graph is a cycle which passes once through every vertex. A graph is Hamiltonian if it has a Hamiltonian cycle.

A graph in which every vertex has the same degree r is called regular (with degree r) or simply r-regular.

A graph is Eulerian if the sum of all entry in any row or in any column of its adjacency matrix is even.

2. **Show** the following function is a **bijection** and find its **inverse**:

$$f: R \to R$$
, $f(x) = (5x-3)^3 \ \forall x \in R$.

To show that f is an injection we prove that, for all real numbers x and y, f(x) = f(y) implies x = y. Now f(x) = f(y)

$$(5x-3)^3 = .(5y-3)^3 \implies x = y \text{ so } f \text{ is injective.}$$

To show that f is a surjection, let y be any element of the codomain f. We need

to find $x \in R$ such that f(x) = y. Let $x = \frac{\sqrt[3]{y} + 3}{5}$. Then $x \in R$ and

$$f(x) = [5\frac{\sqrt[3]{y} + 3}{5} - 3]^3 = y$$
 so f is surjective.

To find f^{-1} we simply use its definition: if y = f(x) then $x = f^{-1}(y)$.

Now y = f(x)

$$\Rightarrow y = (5x-3)^3 \Rightarrow x = \frac{\sqrt[3]{y}+3}{5}$$

 $x = f^{-l}(y) = \frac{\sqrt[3]{y+3}}{5}$. Therefore the inverse function is $f^{-l}: R \rightarrow R, f^{-l}(y) = \frac{\sqrt[3]{y+3}}{5}$.

3. **Define** a switching function for the following system of switches:

$$f(x_1, x_2, x_3) = (\overline{x_1} \oplus x_2 x_3)(\overline{x_2} \overline{x_3} \oplus x_1).$$

4. **Design** a logic network for the following so that the output is described by the following Boolean expression: $(x_1 \oplus x_2)(\overline{x_1} \oplus \overline{x_2})$.

