

جامعة بنها - كلية العلوم - قسم الرياضيات

لطلاب المستوى الثالث

يوم الامتحان: الاثنين ٤ / ١ / ٢٠١٦ م

المادة: رياضيات متقطعة (٣١٢ ر)

الممتحن: د . / محمد السيد عبدالعال عبدالغنى

مدرس بقسم الرياضيات بكلية العلوم

اسئله + نموذج إجابه

ورقة كاملة





## رياضيات متقطعة (312 ر) لطلاب المستوى الثالث

أجب على الاسئله التاليه (الدرجة الكلية ١٢٠ درجة)

**Question 1.** 

السؤال الأول (٢٠ درجة) :-

- 1- Let A, B, C, D be sets, prove that:
  - I.  $A \subseteq B$  if and only if  $P(A) \subseteq P(B)$
  - II.  $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 2- Let  $f: A \to B$  and  $g: B \to C$  be two functions **prove that**: **if** f and g are both bijection **then** so, too is  $g \circ f$ .
- **3-** For all propositions p, q, r, **Prove that:** 
  - I.  $(p \land q) \lor (p \lor q) \equiv p$
  - II.  $[(p \rightarrow q) \land (p \lor r)] \Rightarrow (q \lor r)$ .

Question 2.

السؤال الثاني (٢٠ درجة) :-

- 1. **Define** the complete graph  $K_n$ , the complete bipartite graph  $K_{r,s}$  and Eulerian path, and for **which values** of n, r, s, the graphs  $K_n$ ,  $K_{r,s}$  are **Eulerian**?
- 2. **Show** the following function is a **bijection** and find its **inverse**:

$$f: R - \{5\} \to R - \{2\}, f(x) = \frac{2x+1}{x-5} \ \forall x \in R - \{5\}.$$

3. A relation  $\equiv_5$  on the set Z is defined by  $a \equiv_5 b$  if and only if a - b = 5k for some  $k \in Z$ , show that  $\equiv_5$  is an equivalent relation and describe the equivalence classes [3], [-1].

## **Question 3.**

السؤال الثالث (٣٠ درجة) :-

- 1. Let  $f: Q \to Q$  be a bijection function  $f(x) = 2x + 1 \ \forall x \in Q$ . Find  $f(Z^+)$ ,  $f^{-1}(Z^+)$ .
- 2. **Design** a logic network for the following so that the output is described by the Boolean expression given:  $x_1x_3 \oplus \overline{x_1} \oplus x_2 \overline{x_3}$ .





بامعة بنها كلية السعلوم الرياضيات

3. **Find** the matrix  $A^3$ , where A be the adjacency matrix, for the following graph: and **write** all edge sequences of length 3 joining  $v_2$ ,  $v_3$ .



# **Question 4.**

السؤال الرابع (30 درجة) :-

- 1. Let S be a non-empty set and consider P(S), the power set of S, together with the binary operations of union and intersection and the operation of complementation then:
  - I. **prove that**  $(P(S), \cup, \cap, \neg, \phi, S)$  is a Boolean algebra.
  - II. Given  $A \in P(S)$ , **prove that** there is only one  $\overline{A} \in P(S)$  such that  $A \cup \overline{A} = S$  and  $A \cap \overline{A} = \phi$ .
- 2. **Define** a switching function for the following system of switches:



3. Let f, g, and h be functions  $R \rightarrow R$  defined respectively by

$$f(x) = 2x + 1$$
,  $g(x) = \frac{1}{x^2 + 1}$ , and  $h(x) = \sqrt{x^2 + 1}$ .

**Find** expressions for  $(f \circ (g \circ h))(x)$ .

.....



# نموذج اجابه لأمتحان رياضيات متقطعة (٣١٢ ر) لطلاب المستوى الثالث (الدرجة الكلية ٢٠٠ درجة )

اجابة السؤال الأول (30 درجة) :-

### 1- Let A, B, C, D be sets, prove that:

- I.  $A \subseteq B$  if and only if  $P(A) \subseteq P(B)$
- $II. \quad A \times (B \cap C) = (A \times B) \cap (A \times C)$

لحــــل

### 1- $A \subseteq B$ if and only if $P(A) \subseteq P(B)$

To prove the biconditional statement we prove the two conditional statements:  $A \subseteq B \Rightarrow P(A) \subseteq P(B)$  and  $P(A) \subseteq P(B) \Rightarrow A \subseteq B$ .

Firstly, suppose  $A \subseteq B$ . We must show that  $P(A) \subseteq P(B)$ , so let  $X \in P(A)$ .

This means  $X \subseteq A$ . Since  $A \subseteq B$ , it follows that  $X \subseteq B$ , which means that  $X \in P(B)$ . Since  $X \in P(A)$  implies  $X \in P(B)$ , we conclude that  $P(A) \subseteq P(B)$ , which completes the first half of the proof. To prove the converse statement, suppose  $P(A) \subseteq P(B)$ . Since  $A \in P(A)$ , it follows that  $A \in P(B)$ . This means that  $A \subseteq B$ , which completes the proof.

\_\_\_\_\_

II- 
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Let  $(a, x) \in A \times (B \cap C)$ . By the definition of the Cartesian product, this means that  $a \in A$  and  $x \in (B \cap C)$ . Thus  $x \in X$ , so (a, x) belongs to  $A \times B$ ; and  $x \in C$ , so (a, x) belongs to  $A \times C$  as well. Therefore  $(a, x) \in (A \times B) \cap (A \times C)$ , which proves that  $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$ . To prove the subset relation the other way round as well, let

To prove the subset relation the other way round as well, let  $(a, x) \in (A \times B) \cap (A \times C)$ .

Then  $(a, x) \in (A \times B)$ , so  $a \in A$  and  $x \in B$ ; and  $(a, x) \in (A \times C)$ , so  $a \in A$  and  $x \in C$ . Therefore  $a \in A$  and  $x \in (B \cap C)$  which means that the ordered pair (a, x) belongs to the Cartesian product  $A \times (B \cap C)$ . Hence  $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$ .

The conclusion that the sets  $A\times (B\,\cap\, C\,)$  and  $(A\times B)\,\cap\, (A\times C\,)$  are equal now





- 2- Let  $f: A \to B$  and  $g: B \to C$  be two functions **prove that**: **if** f and g are both bijection **then** so, too is  $g \circ f$ .
- (i) Suppose f and g are injections. Let a,  $a_1 \in A$ , b = f(a) and  $b_1 = f(a_1)$ .

Then 
$$g \circ f(a) = g \circ f(a_I)$$
  
 $g(f(a)) = g(f(a_I))$   
 $\Rightarrow g(b) = g(b_I) \Rightarrow b = b_I \Rightarrow \text{(since g is injective)}$ 

$$f(a) = f(a_1)$$
 (since  $f(a) = b$ ,  $f(a_1) = b_1$   
 $\Rightarrow a = a_1 \Rightarrow$  (since f is injective).

Hence  $g \circ f$  is an injection.

- (ii) Suppose f and g are surjections and let  $c \in C$ . Since g is surjective, there exists  $b \in B$  such that g(b) = c, and since f is surjective, there exists  $a \in A$  such that f(a) = b. Therefore there exists  $a \in A$  such that  $g \circ f(a) = g(f(a)) = g(b) = c$  so  $g \circ f$  is surjective.

  - **3-** For all propositions p, q, r, **Prove that:** 
    - I.  $(\overline{p} \wedge q) \vee (\overline{p \vee q}) \equiv \overline{p}$
    - II.  $[(p \rightarrow q) \land (p \lor r)] \Rightarrow (q \lor r)$ .

١

$$(\overline{p} \wedge q) \vee (\overline{p \vee q}) \equiv (\overline{p} \wedge q) \vee (\overline{p} \wedge \overline{q}) \equiv (\overline{p} \wedge \overline{(q} \vee q) \equiv \overline{p} \wedge t \equiv \overline{p}$$
 
$$\text{ii-} [(p \to q) \wedge (p \vee r)] \Rightarrow (q \vee r)$$

| <u>p</u> | <u>q</u> | <u>r</u> | $p \rightarrow q$ | $p \vee r$ | $(p \to q) \land (p \lor r)$ | $q \vee r$ | $[(p \to q) \land (p \lor r)] \to (q \lor r)$ |
|----------|----------|----------|-------------------|------------|------------------------------|------------|-----------------------------------------------|
| 1        | 1        | 1        | 1                 | 1          | 1                            | 1          | 1                                             |
| 1        | 1        | <u>0</u> | 1                 | 1          | 1                            | 1          | 1                                             |
| 1        | <u>0</u> | 1        | <u>0</u>          | 1          | <u>0</u>                     | 1          | 1                                             |
| 1        | <u>0</u> | <u>0</u> | <u>0</u>          | 1          | <u>0</u>                     | <u>0</u>   | 1                                             |
| 0        | 1        | 1        | 1                 | 1          | 1                            | 1          | 1                                             |
| <u>0</u> | 1        | <u>0</u> | 1                 | <u>0</u>   | <u>0</u>                     | 1          | 1                                             |

| ن<br>۲ ر) | ة امتحا<br>4 (۲۲° | ج اجاباً<br>متقطعة | نموذج<br>رياضيات م |          | العالمة  |          | جامعة بنـــها<br>كلية الـــعلوم<br>قسم الرياضيات |
|-----------|-------------------|--------------------|--------------------|----------|----------|----------|--------------------------------------------------|
| 0         | 0                 | 1                  | 1                  | 1        | 1        | 1        | 1                                                |
| 0         | 0                 | 0                  | 1                  | <u>0</u> | <u>0</u> | <u>0</u> | 1                                                |
|           |                   |                    |                    |          |          |          | أجابة السؤال الثاني (30 درجة) :-                 |

1. **Define** the complete graph  $K_n$ , the complete bipartite graph  $K_{r,s}$  and Eulerian path, and for **which values** of n, r, s, the graphs  $K_n$ ,  $K_{r,s}$  are **Eulerian**?

الحال

A complete graph is a simple graph in which every pair of distinct vertices is joined by an edge. A complete bipartite graph is a bipartite graph such that every vertex of  $V_1$  is joined to every vertex of  $V_2$  by a unique edge.

An Eulerian path in a graph G is a closed path which includes every edge of G. A graph is said to be Eulerian if it has at least one Eulerian path.

The complete graph  $K_n$  is (n-1)-regular–every vertex has degree n-1. Since it is connected,  $K_n$  is Eulerian if and only if n is odd (so that n-1 is even).

A complete bipartite graph  $K_{r,s}$  is Eulerian if and only if r,s is even.

2. **Show** the following function is a **bijection** and find its **inverse**:

$$f: R-\{5\} \to R-\{2\}, f(x) = \frac{2x+1}{x-5} \ \forall x \in R-\{5\}.$$

الحسل

To show that f is an injection we prove that, for all real numbers x and y,

$$f(x) = f(y)$$
 implies  $x = y$ . Now  $f(x) = f(y)$ 

$$\Rightarrow \frac{2x+1}{x-5} = \frac{2y+1}{y-5}$$

easily  $\Rightarrow x = y$  so f is injective.

To show that f is a surjection, let y be any element of the codomain f. We need

to find  $x \in R-\{5\}$  such that f(x) = y. Let  $x = \frac{1+5y}{y-2}$ . Then  $x \in R-\{5\}$  and

$$f(x) = \left[2\frac{1+5y}{y-2} + 1\right] \div \left[\frac{1+5y}{y-2} - 5\right] = \frac{2+10y+y-2}{y-2} \div \frac{1+5y-5y+10}{y-2} = \frac{11y}{11} = y$$

so f is surjective.

To find  $f^{-l}$  we simply use its definition: if y = f(x) then  $x = f^{-l}(y)$ . Now

$$y = f(x) \Rightarrow y = \frac{2x+1}{x-5} \Rightarrow x = \frac{1+5y}{y-2}$$



$$x = f^{-1}(y) = \frac{1+5y}{y-2}.$$

Therefore the inverse function is  $f^{-1}: R-\{2\} \longrightarrow R-\{5\}, f^{-1}(y) = \frac{1+5y}{y-2}$ .

\_\_\_\_\_\_

3. A relation  $\equiv_5$  on the set Z is defined by  $a \equiv_5 b$  if and only if a - b = 5k for some  $k \in Z$ , show that  $\equiv_5$  is an equivalent relation and describe the equivalence classes [3], [-1].



In this case  $a \equiv_5 b$  if and only if a - b = 5k for some integer k; that is, if and only if there exists an integer k such that a = 5k + b.

Firstly, R is reflexive since a-a = 50,

Secondly, if  $a \equiv_5 b$  i.e. a-b =5k then b-a =-5k so implies  $b \equiv_5 a$  therefore  $\equiv_5$  is symmetric.

Thirdly, suppose  $a \equiv_5 b$  and  $b \equiv_5 c$ ; then there exist integers k such that a-b = 5k and b-c = 5k<sub>1</sub>.

Combining these two equations gives a-c =  $5(k-k_1)$  therefore  $a \equiv_5 c$ 

where (k-k1) is an integer. Thus  $a \equiv_5 b$  and  $b \equiv_5 c$  implies  $a \equiv_5 c$  so  $\equiv_5$  is transitive.

Therefore

[p] = 
$$\{q \in z : q = 5k + p, \text{ for some } k \in z\}.$$
  
[3] =  $\{q \in z : q = 5k + 3, \text{ for some } k \in z\}.$   
[-1] =  $\{q \in z : q = 5k + -1, \text{ for some } k \in z\}.$ 

أجابة السؤال الثالث (30 درجة):

1. Let  $f: Q \to Q$  be a bijection function  $f(x) = 2x + 1 \ \forall x \in Q$ . Find  $f(Z^+)$ ,  $f^{-1}(Z^+)$ .



This function can be represented visually by a modified version of the 'arrow diagram' -

$$Z^{+:}$$
 1 2 3 4 5 6.....

: 3 5 7 9 11 13.... $f(Z^+)$ 

$$f(Z^+) = \{ y = 2x + 1, x \in z^+ \}$$

$$f^{-1}(Z^+) = \{x = \frac{y-1}{2}, y \in z^+\}$$



جامعة بنها كلية السعلوم نسم الرياضيات

2. Design a logic network for the following so that the output is described by the Boolean expression given:  $x_1x_3 \oplus \overline{x_1} \oplus x_2\overline{x_3}$ .



3. **Find** the matrix  $A^3$ , where A be the adjacency matrix, for the following graph: and **write** all edge sequences of length 3 joining  $v_2$ ,  $v_3$ .



$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 11 & 9 & 4 & 8 & 9 \\ 9 & 4 & \frac{6}{6} & 8 & 3 \\ 4 & 5 & 0 & 2 & 5 \\ 8 & 8 & 2 & 8 & 8 \\ 9 & 3 & 6 & 8 & 3 \end{pmatrix}$$

e<sub>6</sub> e<sub>6</sub> e<sub>6</sub>; e<sub>5</sub> e<sub>8</sub> e<sub>7</sub>; e<sub>2</sub> e<sub>1</sub> e<sub>2</sub>; e<sub>6</sub> e<sub>7</sub> e<sub>7</sub>; e<sub>5</sub> e<sub>5</sub> e<sub>6</sub>; e<sub>2</sub> e<sub>2</sub> e<sub>6</sub>;

\_==\_=\_=

## أجابة السؤال الرابع (٣٠ درجة):

- 1. Let S be a non-empty set and consider P(S), the power set of S, together with the binary operations of union and intersection and the operation of complementation then:
  - I. **prove that**  $(P(S), \cup, \cap, \bar{p}, \phi, S)$  is a Boolean algebra.
  - II. Given  $A \in P(S)$ , prove that there is only one  $\overline{A} \in P(S)$  such that  $A \cup \overline{A} = S$  and  $A \cap \overline{A} = \phi$ .





جامعة بنسها كلية السعلوم نسم الرياضيات

Let S be a non-empty set and consider P(S), the power set of S, together with the binary operations of union and intersection and the operation of complementation, where, for all  $A \in P(S)$ ,  $\overline{A} = S - A$ .

- (a) the operations  $\cup$  and  $\cap$  are associative;
- (b) the operations  $\cup$  and  $\cap$  are commutative;
- (c) the operation  $\cup$  is distributive over  $\cap$  and  $\cap$  is distributive over  $\cup$ ;
- (d) the sets  $\varphi$  and S belong to P(S) and

$$A \cup \varphi = \varphi \cup A = A$$

$$A \cap S = S \cap A = A$$

for all  $A \in P(S)$ . Thus  $\varphi$  and S are the identities for  $\cup$  and  $\cap$  respectively;

(e) for any  $A \in P(S)$ ,  $A \in P(S)$  and  $A \cup \overline{A} = S$  and  $A \cap \overline{A} = \varphi$ .

Since these are precisely the axioms B1-B5 we can conclude that

 $(P(S), \cup, \cap, -, \phi, S)$  is a Boolean algebra. The sum and product operations are union and intersection respectively, and we can write  $0 = \phi$ . and 1 = S for the two identities.

I. Given  $A \in P(S)$ , **prove that** there is only one  $\overline{A} \in P(S)$  such that  $A \cup \overline{A} = S$  and  $A \cap \overline{A} = \phi$ .

Suppose that .b1 and .b2 are both complements of an element b of a Boolean algebra  $(P(S), \cup, \cap, -, \phi, S) = (B, \bigoplus, *, -, 0, 1)$ . This means that

$$b \oplus .b_1 = .b_1 \oplus b = 1$$
,  $b \oplus .b_2 = .b_2 \oplus b = 1$   
 $b * .b_1 = .b_1 * b = 0$ ,  $b * .b_2 = .b_2 * b = 0$ ,  $.b_{1=}\overline{b_1}$ 

Thus we have

We have shown that .b1 = .b2 and so we can conclude that the complement is unique.

2. **Define** a switching function for the following system of switches:





جامعة بنها كلية السعلوم قسم الرباضيات



لحــــل

$$f(x_1, x_2, x_3) = x_1[x_2(x_1 \oplus x_3) \oplus x_3x_2]$$

3. Let f, g, and h be functions  $R \rightarrow R$  defined respectively by

$$f(x) = 2x + 1$$
,  $g(x) = \frac{1}{x^2 + 1}$ , and  $h(x) = \sqrt{x^2 + 1}$ .

**Find** expressions for  $(f \circ (g \circ h))(x)$ .

لحــــل

$$(f \circ (g \circ h))(x) = f(g(h(x))) = f(g(\sqrt{x^2 + 1})) = f(\frac{1}{(\sqrt{x^2 + 1})^2 + 1})$$
$$= f(\frac{1}{x^2 + 2}) = 2\frac{1}{x^2 + 2} + 1 = \frac{x^2 + 4}{x^2 + 2}.$$