

جامعة بنها - كلية العلوم - قسم الرياضيات لطلاب المستوى الثاني يوم الامتحان: الاربعاء ١٨ / ١ / ٢٠١٧ م المادة: رياضيات متقطعة (٢٢٥ ر) الممتحن: د . / محمد السيد عبدالعال عبدالغني مدرس بقسم الرياضيات بكلية العلوم اسئله + نموذج إجابه ورقة كاملة

رياضيات متقطعة (٢٢٥ ر) لطلاب المستوى الثاني

Answer the following questions: (80 marks) درجة)

أجب على الاسئله التاليه (الدرجة الكلية ٨٠ درجة)

Question 1.

السؤال الأول (35 درجة) :-

- 1- A relation R on Z is defined by mR n if and only if $\frac{m-n}{6} \in Z$. Show that R is an equivalence relation and describe the equivalence class of [-5].
- 2- Show that $[\overline{(p \leftrightarrow q)}]$ logically implies $[(p \leftrightarrow \overline{q})]$
- 3- Let $R = \{(a,a),(a,b),(a,c),(b,b),(b,c)\}$ be a relation on the set $\{a,b,c,d\}$. What is the minimum number of elements which need to be added to R in order that it becomes:
 - (i) reflexive; (ii) symmetric; (iii) anti-symmetric; (iv) transitive?
- **4-** Let A, B, C are sets, prove that:
 - I. $A \cup (B-C) = (A \cup B) (\overline{A} \cap C)$.
 - II. $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Question 2.

السوال الثاني (25 درجة)

1. Let f, g and h be functions $f: R \to R$ defined respectively by :

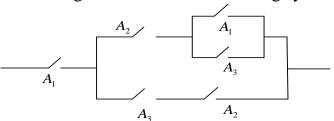
$$f(x) = (5x-3)$$
, $g(x) = x^3$, $h(x) = \sqrt{x^2 + 2}$

- i. Find expressions $((g \circ h) \circ f)(x)$;
- ii. Show that $(f \circ g)(x)$ is bijective and **find** its inverse
- iii. **Prove that** $\operatorname{Im}(h \circ f)(x) \subset \operatorname{Im} h$
- 2. **Design** a logic network for the following so that the output is described by the following Boolean expression: $(x_1 \ x_2 \oplus x_1 \oplus \overline{x_2})$.
- 3. Prove that by definition, $A (B \cap C) = (A B) \cup (A C)$.

Question 3.

السؤال الثالث (25 درجة)

1. **Define** a switching function for the following system of switches:



- 2. Describe the degree sequence of :
 - i. a null graph with *n* vertices;
 - ii. The complete graph K_n :
 - iii. An r-regular graph with n vertices
 - iv. The complete bipartite graph $K_{n,m}$ where $n \le m$,

and which values of n, r, m, the graphs K_n , $K_{n,m}$ and r- regular graph are Eulerian?

3. **Define** a Boolean algebra $(B, \oplus, *, \bar{}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that:** $(\overline{b_1 * b_2}) = \overline{b_1} \oplus \overline{b_2}$.

انتهت أسئلة

مع أطيب تمنياتي بالتوفيق والنجاح د محمد السيد عبدالعال

Good Luck!

نموذج اجابه لأمتحان رياضيات متقطعة (٢٢٥ ر) لطلاب المستوى الثاني (الدرجة الكلية ٨٠ درجة)

اجابة السؤال الأول (٣٥ درجة) :-

1- A relation R on Z is defined by mR n if and only if $\frac{m-n}{6} \in Z$. Show that R is an equivalence relation and describe the equivalence class of [-5].

In this case mR n if and only if m - n = 6k for some integer k; Firstly, R is reflexive since a - a = 6. 0,

Secondly, if mR n i.e. m - n = 6k then n - m = -6k so implies nR m therefore R is symmetric.

Thirdly, suppose mR n and nR s; then there exist integers k such that m - n = 6k and $n-s = 6k_1$. Combining these two equations gives $m-s = 6(k-k_1)$ therefore mR s where (k-k1) is an integer. R is transitive.

Therefore

$$[p] = \{q \in z : q = 6k + p, \text{ for some } k \in z\}.$$

 $[-5] = \{q \in z : q = 5k + -1, \text{ for some } k \in z\}.$

2- Show that $[\overline{(p\leftrightarrow q)}]$ logically implies $[(p\leftrightarrow \overline{q})]$

p	<u>q</u>	\overline{q}	$p \leftrightarrow q$	$\overline{(p \leftrightarrow q)}$	$p \leftrightarrow q$	$\overline{(p \leftrightarrow q)} \leftrightarrow p \leftrightarrow \overline{q}$
1	1	<u>0</u>	1	<u>0</u>	<u>0</u>	1
<u>0</u>	1	<u>0</u>	<u>0</u>	1	1	1
1	<u>0</u>	1	<u>0</u>	1	1	1
0	<u>0</u>	1	1	<u>0</u>	0	1

جامعة بنسها كلية السعلوم نسم الرياضيات

- 3- Let $R = \{(a,a),(a,b),(a,c),(b,b),(b,c)\}$ be a relation on the set $\{a,b,c,d\}$. What is the minimum number of elements which need to be added to R in order that it becomes:
- i) reflexive; (ii) symmetric; (iii) anti-symmetric; (iv) transitive?

- i) $R = \{(c,c),(d,d)\}$
- ii) $R = \{(b,a),(c,a),(c,b)\}$
- iii) $R = \phi$
- iv) $R = \phi$

- **4-** Let *A* , *B* , *C* are sets, **prove that:**
 - I. $A \cup (B-C) = (A \cup B) (\overline{A} \cap C)$.
 - II. $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

$$A \cup (B - C) = A \cup (B \cap \overline{C}) = (A \cup B) \cap (A \cup \overline{C}) = (A \cup B) - \overline{(A \cup \overline{C})}$$
$$= (A \cup B) - \overline{(A \cup \overline{C})} = (A \cup B) - \overline{(A \cap C)}$$

Let $(a, x) \in A \times (X \cap Y)$. By the definition of the Cartesian product, this means that $a \in A$ and $x \in (X \cap Y)$. Thus $x \in X$, so (a, x) belongs to $A \times X$; and $x \in Y$, so (a, x) belongs to $A \times Y$ as well. Therefore $(a, x) \in (A \times X) \cap (A \times Y)$, which proves that $A \times (X \cap Y) \subseteq (A \times X) \cap (A \times Y)$.

To prove the subset relation the other way round as well, let $(a, x) \in (A \times X) \cap (A \times Y)$. Then $(a, x) \in (A \times X)$, so $a \in A$ and $x \in X$; and $(a, x) \in (A \times Y)$, so

Then $(a, x) \in (A \land X)$, so $a \in A$ and $x \in X$, and $(a, x) \in (A \land Y)$, so $a \in A$ and $x \in Y$. Therefore $a \in A$ and $x \in (X \cap Y)$ which means that the ordered pair (a, x) belongs to the Cartesian product $A \times (X \cap Y)$. Hence $(A \times X) \cap (A \times Y) \subseteq A \times (X \cap Y)$.

The conclusion that the sets $A \times (X \cap Y)$ and $(A \times X) \cap (A \times Y)$ are equal now follows, since each is a subset of the other..

أجابة السؤال الثاني (25 درجة) :-

1. Let f, g and h be functions $f: R \to R$ defined respectively by :

$$f(x) = (5x-3)$$
, $g(x) = x^3$, $h(x) = \sqrt{x^2 + 2}$

- Find expressions $((g \circ h) \circ f)(x)$:
- ii. **Show that** $(f \circ g)(x)$ is bijective and **find** its inverse
- 2. **Design** a logic network for the following so that the output is described by the following Boolean expression: $(x_1 x_2 \oplus x_1 \oplus x_2)$.
- 3. Prove that by definition, $A (B \cap C) = (A B) \cup (A C)$.

$$((g \circ h) \circ f)(x) = g(h(f(x))) = g(h((5x-3)))$$

$$= (\sqrt{(5x-3)^2 + 2})^3$$
i.

Let
$$Z(x) = (f \circ g)(x) = f(g(x)) = 5x^3 - 3$$
 .ii

To show that Z is an injection we prove that, for all real numbers x and y, z(x) = z(y) implies x = y. Now f(x) = f(y) i.e. $5x^3 - 3 = 5y^3 - 3 \Rightarrow x = y$ so f is injective.

To show that Z is a surjection, let y be any element of the codomain Z. We need

to find
$$x \in R$$
 such that $Z(x) = y$. Let $x = \sqrt[3]{\frac{y+3}{5}}$. Then $x \in R$ and $f(x) = [5(\sqrt[3]{\frac{y+3}{5}})^3 - 3] = y$

so Z is surjective. To find Z^{-1} we simply use its definition: if y = Z(x) then $x = Z^{-1}(y)$.

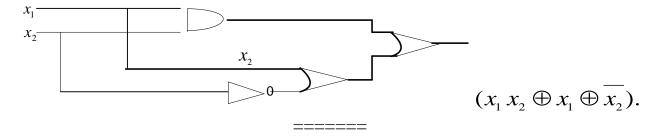
Now y = Z (x)
$$\Rightarrow$$
 y = $(5x-3)^3 \Rightarrow x = \sqrt[3]{\frac{y+3}{5}}$ Therefore $x = f^{-1}(y) = \sqrt[3]{\frac{y+3}{5}}$.

iii. **Prove that** $\operatorname{Im}(h \circ f)(x) \subseteq \operatorname{Im} h$

Let $c \in im(g \circ f)$. Then there exists $a \in A$ such that $(g \circ f)(a) = g(f(a)) = c$. Now let $b = f(a) \in B$; then g(b) = c, so $c \in im(g)$. Therefore $im(g \circ f) \subseteq im(g)$.

جامعة بنها كلية السعلوم نسم الرياضيات

2. **Design** a logic network for the following so that the output is described by the following Boolean expression: $(x_1 \ x_2 \oplus x_1 \oplus \overline{x_2})$.



3. Prove that by definition, $A - (B \cap C) = (A - B) \cup (A - C)$.

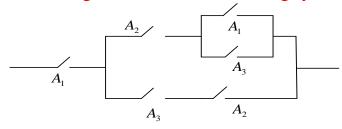
First we show $A - (B \cap C) \subseteq (A - B) \cup (A - C)$. Let $x \in A - (B \cap C)$. Then $x \in A$ and $x / \in B \cap C$. Hence $x \in A$ and either $x / \in B$ or $x / \in C$ (or both). Therefore either $x \in A$ and $x / \in B$ or $x \in A$ and $x / \in C$ (or both). It follows that $x \in A - B$ or $x \in A - C$ (or both).

Hence $x \in (A - B) \cup (A - C)$. We have shown that if $x \in A - (B \cap C)$ then $x \in (A - B) \cup (A - C)$. Therefore $A - (B \cap C) \subseteq (A - B) \cup (A - C)$.

Secondly we must show that $(A - B) \cup (A - C) \subseteq A - (B \cap C)$.

Let $x \in (A - B) \cup (A - C)$. Then $x \in A - B$ or $x \in A - C$ (or both) so $x \in A$ and $x / \in B$ or $x \in A$ and $x / \in C$ (or both). Hence $x \in A$ and either $x / \in B$ or $x / \in C$ (or both) which implies $x \in A$ and $x / \in B \cap C$. Therefore $x \in A - (B \cap C)$. We have shown that if $x \in (A - B) \cup (A - C)$ then $x \in A - (B \cap C)$. Therefore $(A - B) \cup (A - C) \subseteq A - (B \cap C)$. Finally, since we have shown that each set is a subset of the other, we may conclude $(A - B) \cup (A - C) = A - (B \cap C)$.

1. **Define** a switching function for the following system of switches:



$$f(x_1, x_2, x_3) = x_1[x_2(x_1 \oplus x_3) \oplus x_3x_2]$$

==========

- 2. Describe the degree sequence of :
 - 1. a null graph with *n* vertices;
 - 2. The complete graph K_n ;

- 3. An *r*-regular graph with *n* vertices
- 4. The complete bipartite graph $K_{n,m}$ where $n \le m$

and which values of n, r, m, the graphs K_n , $K_{n,m}$ and r- regular graph are Eulerian?

- 1. a null graph with n vertices; (0,0,0,...)
- 2. The complete graph K_n ; (n-1, n-1, n-1, ...)
- 3. An r-regular graph with n vertices (r, r, r, ...)
- 4. The complete bipartite graph $K_{n,m}$ where $n \le m$, (n,n,n,...n,m,m,m,...m)

values of n, r, m, the graphs K_n , $K_{n,m}$ and r- regular graph are Eulerian

اذا كانت عدد فردى K_n

اذا کانت n,m اخداد زوجیة $K_{n,m}$

r- regular graph اذا كانت rزوجية

3. **Define** a Boolean algebra $(B, \oplus, *, \bar{}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that:** $(\overline{b_1 * b_2}) = \overline{b_1} \oplus \overline{b_2}.$

Boolean algebra consists of a set B together with three operations defined on that set. These are:

- (a) a binary operation denoted by \bigoplus referred to as the **sum**;
- (b) a binary operation denoted by * referred to as the **product**;
- (c) an operation which acts on a single element of B, denoted by -,

where, for any element $b \in B$, the element $b^- \in B$ is called the **complement** of b^{-} (An operation which acts on a single member of a set S and which results in a member of S is called a **unary operation**.)

The following axioms apply to the set B together with the operations \bigoplus , * and -.

بامعة بنها كلية السعلوم سم الرياضيات

B1. Distinct identity elements belonging to B exist for each of the binary operations \bigoplus and * and we denote these by $\mathbf{0}$ and $\mathbf{1}$ respectively. Thus we have

$$b \oplus \mathbf{0} = \mathbf{0} \oplus b = b$$

 $b * \mathbf{1} = \mathbf{1} * b = b$ for all $b \in B$.

for all $a, b, c \in B$.

$$(a * b) * c = a * (b * c)$$
$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

- B2. The operations \bigoplus and * are associative, that is
- B3. The operations \bigoplus and * are commutative, that is

$$a \oplus b = b \oplus a$$

$$a * b = b * a$$
 for all $a, b \in B$.

B4. The operation \bigoplus is distributive over * and the operation * is distributive over \bigoplus , that is

$$a \bigoplus (b * c) = (a \bigoplus b) * (a \bigoplus c)$$
$$a * (b \bigoplus c) = (a * b) \bigoplus (a * c) \text{ for all } a, b, c \in B.$$

B5. For all $b \in B$, $b \oplus .b = 1$ and b * .b = 0.

$$(b_1 \bigoplus b_2) \bigoplus (\overline{b_1} * \overline{b_2}) = [(b_1 \bigoplus b_2) \bigoplus \overline{b_1}] * [(b_1 \bigoplus b_2) \bigoplus \overline{b_2}]$$
 (axiom B4)

$$= [\overline{b_1} \bigoplus (b_1 \bigoplus b_2)] * [(b_1 \bigoplus b_2) \bigoplus \overline{b_2}]$$
 (axiom B3)

$$= [(\overline{b_1} \bigoplus b_1) \bigoplus b_2] * [b_1 \bigoplus (b_2 \bigoplus \overline{b_2})]$$
 (axiom B2)

$$= (1 \bigoplus b_2) * (b_1 \bigoplus 1)$$
 (axiom B5)

$$= 1 * 1$$
 (theorem 9.4)

$$= 1$$

We have proved that $(b_1 \oplus b_2) \oplus \overline{b_1} * \overline{b_2} = 1$ so that $\overline{b_1} * \overline{b_2}$ is the complement of $b_1 \oplus b_2$, i.e. $(b_1 \oplus b_2) = \overline{b_1} * \overline{b_2}$. That $(b_1 * b_2) = \overline{b_1} \oplus \overline{b_2}$ follows from the duality principle.
