

جامعة بنها - كلية العلوم - قسم الرياضيات لطلاب المستوى الرابع يوم الامتحان: الاربعاء ١٨ / ١ / ٢٠١٧ م المادة: رياضيات متقطعة (٣١٢ ر) الممتحن: د . / محمد السيد عبدالعال عبدالغني مدرس بقسم الرياضيات بكلية العلوم اسئله + نموذج إجابه ورقة كاملة

جامعة بنسها كلية السعلوم نسم الرياضيات

رياضيات متقطعة (٣١٢ ر) لطلاب المستوى الرابع

Answer the following questions: (80 marks)

أجب على الاسئله التاليه (الدرجة الكلية ٨٠ درجة)

Question 1.

السؤال الأول (20 درجة) :-

- 1- Show that $[(p \rightarrow q) \land (p \lor r)]$ logically implies $(q \lor r)$
- 2- Let $R = \{(a,a), (a,d), (b,b), (c,c), (d,e), (e,a), (d,e)\}$ be a relation on the set $\{a,b,c,d,e\}$. What is the minimum number of elements which need to be added to R in order that it becomes:
 - (i) reflexive; (ii) symmetric; (iii) anti-symmetric; (iv) transitive?
- 3- Let A, B, C are sets, prove that:
 - I. $A \cap (B-C) = (A \cap B) C$.
 - II. $P(A) \cap P(B) = P(A \cap B)$.

Question 2.

السؤال الثاني (20 درجة)

- **1.** If a connected planar graph G has V vertices and E edges and dividing the plane into F faces, then **prove that**: F = E V + 2.
- **2.** A relation R on $Z^+ \times Z^+$ is defined by (m,n)R(p,q) if and only if mq = np. Show that R is an equivalence relation and describe the equivalence class of (2,5).
- **3. Design** a logic network for the following so that the output is described by the following Boolean expression: $(x_1 \oplus \overline{x_2} \oplus x_3) \overline{x_1}$.

انظر خلف الورقة

بامعة بنها كلية السعلوم سم الرياضيات

السوال الثالث (<mark>20</mark> درجة)

1. **Define** a switching function for the following system of switches:

- 2. **Define** a Boolean algebra $(B, \oplus, *, \bar{b}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that:** There is only one element $\overline{b_1} \in B$ such that $b_1 \oplus \overline{b_1} = 1$ and $b_1 * \overline{b_1} = 0$.
- 3. **Find** the matrix A^2 , where A be the adjacency matrix, for the following graph: and **write** all edge sequences of length 2 joining v_1, v_4 .

السؤال الرابع (20 درجة)

- 1. For any propositions p, q, r, **Prove that:** $(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$.
- 2. **Define** Trees, the complete graph K_n , the complete bipartite graph $K_{r,s}$ and, for which values of n, r, s, the graphs K_n , $K_{r,s}$ are Eulerian?
- 3. Let f, g and h be functions $f: R \to R$ defined respectively by :

$$f(x) = (5x^2 + 3), \quad g(x) = x^3, \quad h(x) = \sqrt{x^2 + 2}$$

Find expressions $(f \circ h)(x)$, $(h \circ g)(x)$;

انتهت أسئلة

مع أطيب تمنياتي بالتوفيق والنجاح

Good Luck!

د. محمد السيد عبدالعال

نموذج اجابه لأمتحان رياضيات متقطعة (٢٢٥ ر) لطلاب المستوى الثاني

(الدرجة الكلية ٨٠ درجة)

السؤال الأول (20 درجة) :-

1- Show that $[(p \rightarrow q) \land (p \lor r)]$ logically implies $(q \lor r)$

الحـــــل

p	<u>q</u>	<u>r</u>	$p \rightarrow q$	$p \vee r$	$(p \to q) \land (p \lor r)$	$q \vee r$	$[(p \to q) \land (p \lor r)] \to (q \lor r)$
1	1	1	1	1	1	1	1
1	1	<u>0</u>	1	1	1	1	1
1	<u>0</u>	1	0	1	<u>0</u>	1	<u>1</u>
1	<u>0</u>	0	0	1	<u>0</u>	<u>0</u>	1
0	1	1	1	1	1	1	1
0	1	<u>0</u>	1	<u>0</u>	<u>0</u>	<u>1</u>	<u>1</u>
0	0	1	1	1	1	1	1
0	0	0	1	<u>0</u>	<u>0</u>	0	1

- 2- Let $R = \{(a,a), (a,d), (b,b), (c,c), (d,e), (e,a), (d,c)\}$ be a relation on the set $\{a,b,c,d,e\}$. What is the minimum number of elements which need to be added to R in order that it becomes:
 - (ii) reflexive; (ii) symmetric; (iii) anti-symmetric; (iv) transitive?

الحــــل

i)
$$R = \{(d,d),(e,e)\}$$

ii)
$$R = \{(d,a),(e,d),(c,d),(a,e)\}$$

iii)
$$R = \phi$$

iv)
$$R = \{(a,e), (d,a), (e,d), (a,c)\}$$

سامعة بنسها كلية السعلوم سعم الرياضيات

4- Let A, B, C are sets, **prove that:**

III.
$$A \cap (B-C) = (A \cap B) - C$$
.

IV.
$$P(A) \cap P(B) = P(A \cap B)$$
.

الحــــا

$$A \cap (B-C) = A \cap (B \cap \overline{C}) = (A \cap B) \cap \overline{C} = (A \cap B) - C$$

$$P(A) \cap P(B) = P(A \cap B)$$

Let
$$X \in P(A) \cap P(B) \Leftrightarrow X \in P(A) \land X \in P(B)$$

$$\Leftrightarrow X \subseteq A \land X \subseteq B \Rightarrow X \subseteq A \cap B \Leftrightarrow X \in P(A \cap B)$$

$$\Leftrightarrow P(A) \cap P(B) = P(A \cap B)$$

Question 2.

السؤال الثاني (20 درجة)

1. If a connected planar graph G has V vertices and E edges and dividing the plane into F faces, then **prove that**: F = E - V + 2.

The proof is by induction on the number of edges of G. If E=0 then V=1 (G is connected, so there cannot be two or more vertices) and there is a single face (consisting of the whole plane except the single vertex), so F=1. therefore holds in this case. Suppose, now, that the theorem holds for all graphs with fewer than n edges. Let G be a connected planar graph with n edges; that is |E|=n. If G is a tree, then |V|=n+1 and |F|=1, so the theorem holds in this case too. If G is not a tree choose any cycle in G and remove one of its edges. The resulting graph G is connected, planar and has n-1 edges, |V| vertices and |F|-1 faces. By the inductive hypothesis, Euler's formula holds for G_- : |F|-1=(|E|-1)-|V|+2 so |F|=|E|-|V|+2 as required

====

1. A relation R on $Z^+ \times Z^+$ is defined by (m,n)R(p,q) if and only if mq = np. Show that R is an equivalence relation and describe the equivalence class of (2,5).

الحـــل

جامعة بنسها كلية السعلوم نسم الرياضيات

For all positive integers a and b, a b = b a, so (a, b) R (a, b) for every $(a, b) \in A$, Therefore R is reflexive.

R is symmetric since if (a, b) R (c, d) then a d = b c which implies that c b = d a, so (c, d) R (a, b).

To show that R is transitive, suppose (a, b) R (c, d) and (c, d) R (e, f). This means that a d = b c and c f = d e, we have a f = b e.

This means that (a, b) R (e, f). Therefore R is transitive

And R is an equivalence relation

$$[(2,5)] = \{(x,y) \in Z^+ \times Z^+ : 2y = 5x \}.$$

2. Design a logic network for the following so that the output is described by the following Boolean expression $(x_1 \oplus \overline{x_2} \oplus x_3) \overline{x_1}$.

Question 3.

السؤال الثالث (20 درجة)

1. **Define** a switching function for the following system of switches:

$$f(x_1, x_2, x_3) = (\overline{x_1} \oplus x_2 x_3)(\overline{x_2} \overline{x_3} \oplus x_1)$$

2. **Define** a Boolean algebra $(B, \oplus, *, \bar{b}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that:** There is only one element $\overline{b_1} \in B$ such that $b_1 \oplus \overline{b_1} = 1$ and $b_1 * \overline{b_1} = 0$.

جامعة بنسها كلية السعلوم نسم الرياضيات

<u>Boolean algebra</u> consists of a set *B* together with three operations defined on that set. These are:

- (a) a binary operation denoted by \bigoplus referred to as the **sum**;
- (b) a binary operation denoted by * referred to as the **product**;
- (c) an operation which acts on a single element of B, denoted by -,

where, for any element $b \in B$, the element $b \in B$ is called the **complement** of b (An operation which acts on a single member of a set S and which results in a member of S is called a **unary operation**.) The following axioms apply to the set B together with the operations \bigoplus , * and - .

B1. Distinct identity elements belonging to B exist for each of the binary operations \bigoplus and * and we denote these by $\mathbf{0}$ and $\mathbf{1}$ respectively. Thus we have

$$b \oplus \mathbf{0} = \mathbf{0} \oplus b = b$$

 $b * \mathbf{1} = \mathbf{1} * b = b$ for all $b \in B$.

for all $a, b, c \in B$.

$$(a * b) * c = a * (b * c)$$
$$(a \bigoplus b) \bigoplus c = a \bigoplus (b \bigoplus c)$$

- B2. The operations \bigoplus and * are associative, that is
- B3. The operations \bigoplus and * are commutative, that is

$$a \oplus b = b \oplus a$$

$$a * b = b * a$$
 for all $a, b \in B$.

B4. The operation \bigoplus is distributive over * and the operation * is distributive over \bigoplus , that is

$$a \bigoplus (b * c) = (a \bigoplus b) * (a \bigoplus c)$$
$$a * (b \bigoplus c) = (a * b) \bigoplus (a * c) \text{ for all } a, b, c \in B.$$

B5. For all $b \in B$, $b \oplus .b = 1$ and b * .b = 0.

Suppose that .b1 and .b2 are both complements of an element b of a Boolean algebra $(P(S), \cup, \cap, -, \varphi, S) = (B, \bigoplus, *, -, 0, 1)$. This means that

$$b \oplus .b_1 = .b_1 \oplus b = 1$$
, $b \oplus .b_2 = .b_2 \oplus b = 1$
 $b * .b_1 = .b_1 * b = 0$, $b * .b_2 = .b_2 * b = 0$., $.b_{1=}\overline{b_1}$

Thus we have

$$.b1 = .b1 * 1$$
 (axiom B1)
 $= .b1 * (b \oplus .b2)$
 $= (.b1 * b) \oplus (.b1 * .b2)$ (axiom B4)
 $= 0 \oplus (.b1 * .b2)$
 $= 0 \oplus (.b2 * .b1)$ (axiom B3)
 $= (.b2 * b) \oplus (.b2 * .b1)$

بامعة بنها كلية السعلوم سم الرياضيات

 $= .b2 * (b \oplus .b1)$ (axiom B4)

- = .b2 * 1
- = .b2 (axiom B1).

We have shown that .b1 = .b2 and so we can conclude that the complement is unique.

-=-=-

3. **Find** the matrix A^3 , where A be the adjacency matrix, for the following graph: and **write** all edge sequences of length 3 joining v_2 , v_3 .

$$A = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 2 & 0 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 7 & 2 & 6 & \frac{4}{9} \\ 2 & 1 & 1 & 4 \\ 6 & 1 & 6 & 2 \\ 4 & 4 & 2 & 8 \end{pmatrix}$$

 $e_1 e_3$; $e_1 e_4$; $e_8 e_7$; $e_8 e_5$.

Question 4.

السؤال الرابع (<mark>20</mark> درجة)

1. For any propositions p, q, r, **Prove that:** $(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$.

p	<u>q</u>	<u>r</u>	$(p \leftrightarrow q)$	$(p \leftrightarrow q) \leftrightarrow r$	$(q \leftrightarrow r)$	$p \leftrightarrow (q \leftrightarrow r)$
1	1	1	1	1	1	1
1	1	0	1	<u>0</u>	<u>0</u>	<u>0</u>
1	0	1	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
1	0	0	<u>0</u>	<u>1</u>	1	1
0	1	1	<u>0</u>	<u>0</u>	1	<u>0</u>

متحان	ج اجابة ا	نموذ
(077c)	متقطعة	رياضيات

ها	امعة بن	<u>ڊ</u>
_علوم	ية الـــــ	15
	م الرياد	

0	1	0	<u>0</u>	1	<u>0</u>	1
0	0	1	1	1	<u>0</u>	<u>1</u>
0	0	0	1	<u>0</u>	1	<u>0</u>

$$\therefore (p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$$

2. **Define** Trees, the complete graph K_n , the complete bipartite graph $K_{r,s}$ and, for which values of n, r, s, the graphs $K_n, K_{r,s}$ are Eulerian?

A trees is a connected graph which contains no cycles.

the complete graph K_n is a simple graph in which every pair of distinct vertices is joined by an edge.

A complete bipartite graph is a bipartite graph such that every vertex of V_1 is joined to every vertex of V_2 by a unique edge.

An Eulerian path in a graph G is a closed path which includes every edge of G. A graph is said to be Eulerian if it has at least one Eulerian path.

The complete graph K_n is (n-1)-regular—every vertex has degree n-1. Since it is connected, K_n is Eulerian if and only if n is odd (so that n-1 is even).

A complete bipartite graph $K_{r,s}$ is Eulerian if and only if r,s is even.

3. Let f, g and h be functions $f: R \to R$ defined respectively by :

$$f(x) = (5x^2 + 3), \quad g(x) = x^3, \quad h(x) = \sqrt{x^2 + 2}$$

Find expressions $(f \circ h)(x)$, $(h \circ g)(x)$;

$$(f \circ h)(x) = f(h(x)) = f(\sqrt{x^2 + 2}) = 5(x^2 + 2) + 3$$
$$(h \circ g)(x) = h(g(x)) = h(x^3) = \sqrt{(x^3 + 2)}$$

===,====,====,====,===,===