

 ءثلاثالوم الامتحان: اـي

)حاسب(ثالثالمستوي ال

 م 1071/ 7/ 71 تـاريخ الامتحان:
 رس(355) 1موضوعات مختارة في علوم الحاسب المادة :

 مصعب عبد الحميد محمد حسانالممتحن: د/

 الرياضيات بكمية العموممدرس بقسم

 ةجابالإنموذج الاسئمة و

 كاممة ورقة

Selected Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

:uestionsAnswer the following q

marks) 16(Question 1.

A- Define AVL tree, hashing, and directed graph. (4 marks)

B- Discuss graph invariants in details. (8 marks)

C- Write a function to apply the right rotation round node p. (4 marks)

Question 2. (17 marks)
A- Draw the binary search tree by inserting the following sequence

into an initially empty tree:

26 15 29 14 20

 Test if this tree is AVL tree or not? Suppose we insert a new node

of data 17, test that the tree is AVL tree or not and if the tree is not

AVL tree show how can we rebalance it? (5 marks)

B- Compare between adjacency matrix representation and adjacency

list representation of graphs. (4 marks)

C- Discuss collision resolution strategies. (8 marks)

Question 3. (15 marks)
A- Discuss the applications of hashing. (3 marks)

B- Using adjacency matrix representation, write a function to test if

the given graph is complete or not. (4 marks)

C- Using Ullman algorithm, test that the following two graphs are

isomorphic or not. (8 marks)

Best Wishes
Dr. Mosab Abd El-Hameed

Benha University

Faculty of Science

Dept. of Mathematics

Time: Two Hours

First Semester 2016-2017

Date : 17/1/2017

Model Answer
Selected Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

Answer of Question 1.
A- AVL tree: A binary search tree in which the balance factor of each

node is 0, 1, or -1, where the balance factor of a node x is the height

of the left subtree of x minus the height of x's right subtree. (Recall

that the height of a tree is the number of levels in it.)

 Hashing: allows us to update and retrieve any entry in constant time

O(1).

 directed graph: A graph G = (V, E) is a non-linear data structure

consists of a set of vertices V together with a set E of vertex pairs or

edges. Each edge in the set E is a pair (x, y), where x and y belongs to

V. If the edge pair is ordered, the edge is called directed and thus the

graph is directed graph.

B- A graph invariant is a function T such that if applied to two

isomorphic graphs H and G, then T(H) = T(G). In other words, if

T(H) ≠ T(G) then H is not isomorphic to G.

The following are a graph invariants for graph isomorphism problem

1- Number of nodes of a given graph

2- Number of edges of a given graph

3- Number of cycles of a given graph (Number of paths that the first

vertex is identical to the last vertex)

4- Degree sequence of a given graph (list the degree of each vertex in

this graph), and so on

C- node* BST::rotateright(node* p) // the right rotation round p

 {

 node* q = p->left;

 p->left = q->right;

 q->right = p;

 return q;

 }

Answer of Question 2.
A-

 26 bf =1

 bf =0 15 29 bf =0

bf =0 14 20 bf =0

The Above tree is AVL tree.

After inserting a new node of data 17, the tree is not AVL tree

 26 bf =2

 bf =-1 15 29 bf =0

bf =0 14 20 bf =1

 17 bf =0

 we can we rebalance it using left-right rotation.

First we perform a left rotation of the nodes in the left subtree of

the nearest ancestor with balance factor 2

 26

 20 29

 15

 14 17

Now we apply a right rotation to the tree

 20 bf = 0

 15 26 bf = -1 bf = 0

 14 17 29 bf = 0 bf = 0

 bf = 0

B-

Comparison Winner

Faster to test if (x, y) is in graph? adjacency matrices

Faster to find the degree of a

vertex?

adjacency lists

Less memory on small graphs? adjacency lists

Less memory on big graphs? adjacency matrices

Edge insertion or deletion? adjacency matrices

Faster to traverse the graph? adjacency lists

Better for most problems? adjacency lists

Table : Relative advantages of adjacency lists and matrices.

C-

Collision Resolution
 Here we discuss two strategies of dealing with collisions, linear

probing and separate chaining.

 Linear Probing

 Suppose that a key hashes into a position that is already occupied.

The simplest strategy is to look for the next available position to

place the item. Suppose we have a set of hash codes consisting of {89,

18, 49, 58, 9} and we need to place them into a table of size 10. The

following table demonstrates this process.

 The first collision occurs when 49 hashes to the same location with

index 9. Since 89 occupies the A[9], we need to place 49 to the next

available position. Considering the array as circular, the next

available position is 0. That is (9+1) mod 10. So we place 49 in A[0].

Several more collisions occur in this simple example and in each case

we keep looking to find the next available location in the array to

place the element. Now if we need to find the element, say for

example, 49, we first compute the hash code (9), and look in A[9].

Since we do not find it there, we look in A[(9+1) % 10] = A[0], we

find it there and we are done. So what if we are looking for 79? First

we compute hashcode of 79 = 9. We probe in A[9],

A[(9+1)%10]=A[0], A[(9+2)%10]=A[1], A[(9+3)%10]=A[2],

A[(9+4)%10]=A[3] etc. Since A[3] = null, we do know that 79 could

not exists in the set.

Separate Chaining

 The last strategy we discuss is the idea of separate chaining. The idea

here is to resolve a collision by creating a linked list of elements as

shown below.

 In the picture above the objects, "As", "foo", and "bar" all hash to

the same location in the table, that is A[0]. So we create a list of all the

elements that hash into that location. Similarly, all other lists indicate

keys that were hashed into the same location. Obviously a good hash

function is needed so that keys can be evenly distributed. Because any

uneven distribution of keys will neutralize any advantage gained by the

concept of hashing. Also we must note that separate chaining requires

dynamic memory management (using pointers) that may not be

available in some programming languages. Also manipulating a list

using pointers is generally more complicated than using a simple

array.

Answer of Question 3.

A- Applications of Hashing

 In the internet age, hashing has actually become the data structure of

convenience for many applications. Most modern object oriented

programming languages like Java and C# comes with built in hash

functions that can be used to compute the hash value of any object.

The advantage of hashing is that we can hash just about anything,

strings, tables, complex data structures etc. This allows us to store and

retrieve data in O(1) time.

Web Index

One possible application of hashing is saving a web index as a hash

table. An inverted web index is a mapping between “keywords” and

“URL’s” as shown below.

The above data structure is built using a web crawl where a process

collect pages and key words from each page and organize them in a

data structure as above. So if we need to find all documents that are

connected to a particular keyword, we simply hash into the keyword

and find the corresponding list.

B- Bool Test_Complete(int V, int E){

 int m = V * (V - 1) / 2 ;

 if(m == E)

 return true;

 else

 return false;

 }

C- Ullman algorithm is the earliest and highly-cited approach to the

graph isomorphism problem. Given two graphs G1 and G2. To check

if G1 is subgraph of G2, Ullman’s basic approach is to enumerate all

possible mappings of vertices in VG1 to those in VG2 using a depth-first

tree-search algorithm. In order to cope with graph isomorphism

problem efficiently, Ullman proposed a refinement procedure to prune

the search space. It is based on the following three conditions:

1. Label and degree condition.

 A vertex u ∈ VG1 can be mapped to v ∈ VG2 under bijective mapping

f, i.e v = f(u), if

 (i) L G1(u) = LG2(v), and

 (ii) deg G1(u) = deg G2(v).

In our example, we can find the map f(u1) = v1, f(u2) = v2, f(u3) = v3,

and f(u4) = v4 where L G1(u1) = LG2(v1) =A and deg G1(u1) = deg G2(v1)

= 3 and so on

2. One-to-One mapping of vertices condition.

 Once vertex u ∈ VG1 is mapped to v ∈ VG2, we cannot map any

other vertex in VG1 to the vertex v ∈ VG2.

3. Neighbor condition.

 By this condition Ullman algorithm examines the feasibility of

mapping u ∈ VG1 to v ∈ VG2 by considering the preservation of

structural connectivity. If there exist edges connecting u with

previously explored vertices of G1 but there are no counterpart edges

in G2, the mapping test simply fails. In our example, there is edge

between u1 and u2 in G1 then there is counterpart edge between f(u1)

= v1 and f(u2) = v2 in G2 and so on.

