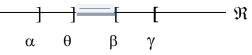
المستوى : الرابع	Benha University	كلية : العلوم
الماده : توبو لوجي و هندسه ====================================		قسم : الرياضيـات ==================

الإجابه النموزجيه :

(1)
(T1) Trivially :
$$\Re =]-\infty, \infty [\in \mathcal{U} \text{ and } \phi =]\alpha, \alpha [\in \mathcal{U}]$$

(T2) Let $G, H \in \mathcal{U}$. Then $G =]\alpha, \beta[, H =]\theta, \gamma[, \text{ so that}]$
 $\int \phi \in \mathcal{U}, \quad \text{if } \beta \leq \theta$
 $G \cap H =]\alpha, \beta[\cap]\theta, \gamma [= \langle]\theta, \beta[\in \mathcal{U}, \quad \text{if } \alpha < \theta < \beta < \gamma$
 $|]\alpha, \beta[\in \mathcal{U}, \quad \text{if } \theta < \alpha < \beta < \gamma$
 $|]\alpha, \gamma[\in \mathcal{U}, \quad \text{if } \theta < \alpha < \gamma < \beta$



In each case, we have, $G \cap H$ belongs to U.

(T3) The union of an arbitrary number of an open intervals is again an open interval.

this topology is called usual topology on \Re . ()

- (T1) Obviously $\phi \in \mathcal{P}$ and since $p \in X$, so $X \in \mathcal{P}$.
- (T2) Let $G, H \in \mathcal{P}$. Then $p \in G$ and $p \in H$,

therefore, $p \in G \cap H$.

Hence, $G \cap H \in \mathcal{P}$.

(T3) Let $H_i \in \mathcal{P}$, where $i \in I$. Then $p \in H_i$, $\forall i \in I$, therefore, $p \in \bigcup_{i \in I} H_i$. Hence, $\bigcup_{i\in I} H_i \in \mathcal{P}$.

That is \mathcal{P} is a topology on X.

Solution. Since

$$\mathcal{P} \cup \xi \subseteq \mathcal{P}(\mathcal{X}) = \mathcal{D} \qquad \dots \dots (1)$$

On other hand, by taking $H \in P(X) = D$, we get two probabilities

(i) $p \in H \implies H \in \mathcal{P} \implies H \in \mathcal{P} \cup \xi$

(ii)
$$p \notin H \Rightarrow H \in \xi \Rightarrow H \in \mathcal{P} \cup \xi$$
.

Therefore

$$\mathcal{D} = \mathbf{P}(\mathbf{X}) \subseteq \mathbf{P} \cup \boldsymbol{\xi} \qquad \dots \qquad (2)$$

From (1), (2) we have, $\mathcal{P} \cup \xi = \mathcal{D}$.

(2)

From definitions we have

$$int A \cap ext A = int A \cap (int A)^{c} = \phi;$$

$$int A \cap b(A) = int A \cap [(int A)^{c} \cap (ext A)^{c}]$$

$$= [int A \cap (int A)^{c}] \cap (ext A)^{c}$$

$$= \phi \cap (ext A)^{c} = \phi \quad \text{and}$$

$$ext A \cap b(A) = ext A \cap [(int A)^{c} \cap (ext A)^{c}]$$

$$= [ext A \cap (ext A)^{c}] \cap (int A)^{c}$$

$$= \phi \cap (int A)^{c} = \phi. \text{ Also,}$$

$$int A \cup ext A \cup b(A) = int A \cup ext A \cup [(int A)^{c} \cap (ext A)^{c}]$$

$$= [int A \cup ext A \cup (int A)^{c}] \cap [int A \cup ext A \cup (ext A)^{c}]$$

$$= [int A \cup (int A)^{c} \cup ext A] \cap [int A \cup ext A \cup (ext A)^{c}]$$
$$= [X \cup ext A] \cap [int A \cup X]$$
$$= X \cap X$$
$$= X.$$

It follows from part (i) that $A' \subseteq (A \cup B)'$ and $B' \subseteq (A \cup B)'$. Then $A' \cup B' \subseteq (A \cup B)'$, (1). Conversely, we must prove that $(A \cup B)' \subseteq A' \cup B'$. Take $\alpha \notin A' \cup B'$, we have $\alpha \notin A'$ and $\alpha \notin B'$ and hence there exist neighborhoods $V, W \in \mathcal{N}_{\alpha}$ such that $(V - \{\alpha\}) \cap A = \phi$ and $(W - \{\alpha\}) \cap B = \phi$. But $V \cap W \in \mathcal{N}_{\alpha}$ satisfies $[(V \cap W) - \{\alpha\}] \cap (A \cup B) = \phi$. Then $\alpha \notin (A \cup B)'$, which proves that $(A \cup B)' \subseteq A' \cup B'$, (2). From (1), (2) we get $(A \cup B)' = A' \cup B'$.

If $A \subseteq C$, $B \subseteq C$, then we have $A \cap B \subseteq C$ $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

(3)

In the indiscrete space $(X, \frac{1}{2})$ and every $\alpha \in X$ we have $\mathcal{N}_{\alpha} = \{X\}$.

If A is a singleton say $A = \{\gamma\}$ we get $(X - \{\gamma\}) \cap A = (X - \{\gamma\}) \cap \{\gamma\} = \phi$, that is $\gamma \notin A'$. For any point $\theta \neq \gamma$, we get $(X - \{\theta\}) \cap A = (X - \{\theta\}) \cap \{\gamma\} = \{\gamma\} \neq \phi$. Hence, $A' = X - \{\gamma\}$.

But if A is a subset containing more than one point, we get A' = X.

- (i) implies (ii) : Let (i) be holds, that is h (X, τ) → (Y, σ) is continuous and F is σ-closed set, then F^c is σ-open.
 Hence, by (i) h⁻¹(F^c) is τ-open. So h⁻¹(F^c) = h⁻¹[Y F] = h⁻¹(Y) h⁻¹(F) = X h⁻¹(F), which is τ-open.
 Thus h⁻¹(F) is τ-closed set.
- (ii) implies (i) : Let (ii) be holds and H be σ -open set, then H^{c} is σ closed. Hence, by (ii), we get $h^{-1}(H^{c})$ is τ -closed set. So $h^{-1}(H^{c}) = h^{-1}[\Upsilon - H] = h^{-1}(\Upsilon) - h^{-1}(H) = X - h^{-1}(H)$, which is τ -closed. That is $h^{-1}(H)$ is τ -open set, therefore h is continuous.
- (ii) implies (iii) : Let (ii) be holds and $A \subseteq X$. Since $h(A) \subseteq \overline{h(A)}$, then $A \subseteq h^{-1}[h(A)]$, by Theorem 1.1 $\subseteq h^{-1}[\overline{h(A)}]$, clear

But, $\overline{h(A)}$ is σ -closed, so by (ii) we have $h^{-1}[\overline{h(A)}]$ is τ -closed. Thus, $\overline{A} \subseteq h^{-1}[\overline{h(A)}]$ and hence by Theorem 1.1 again, we have $h(\overline{A}) \subseteq h\{h^{-1}[\overline{h(A)}]\} \subseteq \overline{h(A)}.$

(iii) implies (ii) : Let (iii) be holds, that is $h(\overline{A}) \subseteq \overline{h(A)}$, for every $A \subseteq X$. Take *F* is \mathfrak{S} -closed set and put $B = h^{-1}(F)$. Then by (iii) we have $\overline{B} \subseteq h^{-1}[h(\overline{B})]$, by Theorem 1.1 $= h^{-1}[h(\overline{h^{-1}(F)})]$ $\subseteq h^{-1}[\overline{h(h^{-1}(F))}]$, by hypothis $\subseteq h^{-1}(\overline{F})$, by Theorem 1.1 $= h^{-1}(F)$, for *F* is \mathfrak{S} -closed = B $\subseteq \overline{B} .$

This meaning that $\overline{B} = h^{-1}(F)$ which is τ -closed set.

(5)

. If \mathcal{B} is a base of some topology τ ($\mathcal{B} \subset \tau$), H and M are members of

 \mathcal{B} and $\alpha \in H \cap M$, we have $H, M \in \mathcal{T}$. Thus $H \cap M \in \mathcal{T}$, therefore $H \cap \mathcal{I}$

M is a union of some members in \mathcal{B} . So there is a member *W* in \mathcal{B} which α belongs to it and which is a subset of $H \cap M$.

Conversely, let \mathcal{B} be a family with the specified property and τ be the family of all unions of members of \mathcal{B} , we have :

- (T1) The empty set ϕ is the void family of members of \mathcal{B} .
- (T2) Let G_1 and G_2 be two members of τ . If $\alpha \in G_1 \cap G_2$ $(G_1 \cap G_2 \neq \phi)$, then at this, we may choose H_1 and H_2 in \mathcal{B} such that $\alpha \in H_1 \subseteq G_1$ and $\alpha \in H_2 \subseteq G_2$. So there is a member W in \mathcal{B} satisfies $\alpha \in W \subseteq H_1 \cap H_2 \subseteq G_1 \cap G_2$. Consequently $G_1 \cap G_2$ is the union of some members of \mathcal{B} .

Therefore $G_1 \cap G_2$ is a member of τ .

- (T3) A union of members of τ is itself a union of members of \mathcal{B} and is therefore a member of τ .
- Hence τ is a topology on X.