جامعة بنها- كلية العلوم الفرقة الثالثة لائحة قديمة شعبة الرياضيات الفصل الدراسي الثاني -2013م تاريخ الامتحان: 2013 / 6 / 13 الخميس نموذج اجابة

المادة: ميكانيكا الكم1 أسم استاذ المادة: الدكتور/رضا جمال عبد الرحمن خالد أمادة الاسئلة

Answer of questions Answer First Question:

1- where
$$\hat{A}e_1 = -e_1$$
, $\hat{A}e_2 = -e_2$, $\hat{A}e_3 = -e_3$,
 $\hat{B}e_1 = \sqrt{\frac{1}{2}}e_1 + \sqrt{\frac{1}{2}}e_2$, $\hat{B}e_2 = \sqrt{\frac{1}{2}}e_1 - \sqrt{\frac{1}{2}}e_2$, $\hat{B}e_3 = e_3$

then

$$\begin{split} \left[\hat{A},\hat{B}\right]\!\!e_{1} &= \hat{A}\!\!\left(\sqrt{\frac{1}{2}}e_{1} + \sqrt{\frac{1}{2}}e_{2}\right) - \hat{B}\!\!\left(\sqrt{\frac{1}{2}}e_{1} + \sqrt{\frac{1}{2}}e_{2}\right). \\ &- \!\left(\sqrt{\frac{1}{2}}e_{1} + \sqrt{\frac{1}{2}}e_{2}\right) - \!\left(\sqrt{\frac{1}{2}}e_{1} + \sqrt{\frac{1}{2}}e_{2}\right) - \sqrt{\frac{1}{2}}e_{1} - \sqrt{\frac{1}{2}}e = 0 \end{split}$$

As the same

$$[\hat{A}, \hat{B}]e_2 = 0. \qquad [\hat{A}, \hat{B}]e_3 = 0.$$

2-To Determine the mean value of a mechanical quantity \hat{L}_z^2 described by the hermitian operator $\hat{L}_z^2 = h^2 \frac{\partial^2}{\partial \varphi^2}$ in the state

$$\Phi(\varphi) = A\sin^2\varphi, \quad 0 \le \varphi \le 2\pi$$

Let
$$\|\Phi(\varphi)\|^2 = 1 = A^2 \int_0^{2\pi} \sin^4 \varphi \quad d\varphi,$$

$$\Rightarrow A^2 = \frac{4}{3\pi}, \Rightarrow A = \frac{2}{\sqrt{3\pi}}$$
Then
$$\Phi(\varphi) = \frac{2}{\sqrt{3\pi}} \sin^2 \varphi, \quad 0 \le \varphi \le 2\pi$$

$$\therefore \langle L_z^2 \rangle_{\Phi} = \left(\Phi \middle| L_z^2 \Phi\right) = \left(\frac{4}{3\pi}\right) \left(-h^2\right) \int_0^{2\pi} \sin \varphi \left(\frac{\partial^2}{\partial \varphi^2} \sin^2 \varphi\right) d\varphi$$
$$= \frac{4h^2}{3}$$

Answer Second Question:

1-The eigenvalues of $\hat{\pi}$

Let
$$\widehat{\pi} \Psi_a = a\Psi_a$$
, $\Rightarrow \widehat{\pi}^2 \Psi_a = a^2\Psi_a = \Psi_a$,
Then $(a^2 - 1)\Psi_a = 0$, $\Rightarrow a^2 - 1 = 0 \Rightarrow a = \pm 1$ since $\Psi_a \neq 0$,
the eigenvectors of $\widehat{\pi}$
 $a = 1 \Rightarrow \Psi_a = \Psi_+(x)$
 $\widehat{\pi} \Psi_a = +\Psi_+(x)$
 $\widehat{\pi} \Psi_a = +\Psi_+(x) \Rightarrow \Psi_+(x) = \Psi_+(-x) *$

i.e. the eigenvector of corresponding a=1 are all element satisfies (*) these element is said even parity

$$a = -1 \implies \Psi_a = \Psi_-(x)$$

$$\widehat{\pi} \ \Psi_a = -\Psi_-(x)$$

$$\widehat{\pi} \ \Psi_+ = \Psi_+(-x) \Rightarrow \Psi_-(x) = -\Psi_-(-x) \quad **$$

i.e. the eigenvector of corresponding a = -1 are all element satisfies (**) these element is said odd parity

To show that the eigenvector of its form a complete set we make

$$\forall \Psi \in L_2 \implies \Psi = \frac{1}{2}(\Psi(x) + \Psi(-x)) + \frac{1}{2}(\Psi(x) - \Psi(-x))$$

Where the first term is even and the second term is odd then we can take

$$\Psi_{+} = \frac{1}{2} (\Psi(x) + \Psi(-x))$$

$$\Psi_{-} = \frac{1}{2} (\Psi(x) - \Psi(-x))$$

i.e. the eigenvector of $\hat{\pi}$ form a complete set

2-
$$\Psi_n(x)$$
 are eigenvector of \widehat{A} , \widehat{B} then

Let
$$\widehat{A} \Psi_n = a_n \Psi_n$$
, $\widehat{B} \Psi_n = b_n \Psi_n$, $\widehat{A} \widehat{B} \Psi_n = b_n a_n \Psi_n$, $\widehat{B} \widehat{A} \Psi_n = a_n b_n \Psi_n$,

Since $b_n a_n = a_n b_n$ then

$$\widehat{A}\,\widehat{B}\,\Psi_n=\widehat{B}\,\widehat{A}\,\Psi_n,$$

Where $\{\Psi_n(x)\}_{is a \text{ complete set}}$

$$\forall \Psi \in H \Rightarrow \Psi = \sum_{n} \alpha_{n} \Psi_{n} \text{ then } \widehat{A} \widehat{B} \Psi = \widehat{B} \widehat{A} \Psi \Rightarrow [\widehat{A}, \widehat{B}] = 0$$

Answer Third Question:

To find the eigenfunction and corresponding eigenvalues we make

$$U(x) = \begin{cases} 0 & -a \le x \le a \\ \infty & x \le -a, x \ge a \end{cases}$$
. What the allowed energy values

Then to find the solution of sch. Equation

$$\frac{d^2\Psi(x)}{dx^2} + \frac{2m}{h} \left[E - U(x) \right] \Psi(x) = 0$$

We have two cases:

a-For the region inside the box

i.e. $-a \le x \le a$ sch. Equation is

$$\frac{d^2\Psi(x)}{dx^2} + k \quad \Psi(x) = 0, \quad k = \sqrt{\frac{2mE}{h^2}}$$
 (1)

the general solution is

$$\Psi(x) = A e^{ikx} + B e^{-ikx}$$
 (2)

b-outside the box

the sch. Equation take the form

$$\frac{d^2\Psi(x)}{dx^2} + \infty \quad \Psi(x) = 0, \tag{3}$$

Where $\Psi(x)$ is finit then the only solution of equation is the trivaial solution

$$\Psi(x) = 0, \quad for \quad |x| \ge a \tag{4}$$

Where $\Psi(x)$ is continuous thus

$$\Psi(-a) = 0, \qquad \qquad \Psi(a) = 0 \tag{5}$$

then from equations 2 and 5, we have

$$A = -Be^{2ika} \Rightarrow \sin 2ka = 1 \Rightarrow k = \frac{n\pi}{2a}, \quad n = 1,2,3,...$$
 (*)

Then from (*) we have

$$\Rightarrow K^2 = \frac{2mE}{h^2} \Rightarrow E_n = \frac{(n\pi h)^2}{8ma^2}$$

also from (*) we have

$$\Psi(x) = 2A\cos kx, \quad n - odd$$

$$\Psi(x) = 2Ai\sin kx, \quad n - even$$
(6)

and from the normalization condition $\|\Psi(x)\|^2 = 1$ we have

$$A = \frac{1}{\sqrt{2a}}$$
 i.e. the eigenstate is given by

$$\Psi(x) = \frac{1}{\sqrt{a}} \cos \frac{n\pi}{2a} x, \quad n - odd$$

$$\Psi(x) = \frac{1}{\sqrt{a}} \sin \frac{n\pi}{2a} x, \quad n - even$$

Answer the fourth Question:

1-To show the expection value $\langle \hat{p} \rangle_{\Phi_i}$, of the \hat{p} momentum vanishes

Let

$$\hat{H} \Phi_n(x) = E_n(x) \Phi_n(x), \qquad (\Phi_n, \Phi_m) = \delta_{mn}$$

$$\therefore \langle P \rangle_{\Phi_n} = (\Phi_n | \hat{P} \Phi_n),$$

Since \hat{x} ,

$$[\widehat{x}, \widehat{P}] = ih$$
 then

$$[\widehat{H},\widehat{x}] = \frac{1}{2m} [\widehat{P}^2,\widehat{x}] = -\frac{ih}{m} \widehat{P}$$

$$\Rightarrow \frac{im}{h} [\widehat{H}, \widehat{x}] = \widehat{P}$$

$$\therefore \langle P \rangle_{\Phi_n} = \left(\Phi_n \middle| \hat{P} \Phi_n \right) = \left(\Phi_n, \frac{im}{h} \left[\hat{H}, \hat{x} \right] \Phi_n \right) = \frac{im}{h} \left(\Phi_n, \middle| \hat{H} x - x \hat{H} \middle| \Phi_n \right)$$

$$= \frac{im}{h} \{ (\Phi_{n}, Hx\Phi_{n}) - (\Phi_{n}, xH\Phi_{n}) \} = \frac{im}{h} \{ E_{n} - E_{n} \} (\Phi_{n}, x\Phi_{n}) = 0$$

2-
$$\hat{A} = k(\sin x) - i(\cos x) \frac{d}{dx}$$
, $\hat{B} = k(\cos x) + i(\sin x) \frac{d}{dx}$, $\hat{C} = -i \frac{d}{dx}$ i-

$$\therefore [\hat{A}, \hat{B}] = i\hat{C},$$

$$[\hat{B}, \hat{C}] = -i\hat{A},$$

$$[\hat{C}, \hat{A}] = -i\hat{B}$$

انتهت الاجابة

أسم استاذ المادة: الدكتور/رضا جمال عبد الرحمن خالد كلية العلوم قسم الرياضيات