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 --------------------------الحل  ------------------------
 Consider a lens having an index of refraction n and two 

spherical surfaces of radii of curvature 1R and 2R , as in Fig. (1). 

An object is placed at point O at a distance 1p  in front of surface 

1. For this example, 1p  has been chosen so as to produce a 

virtual image 1I  to the left lens. This image is then used as the 

object for surface 2, which results in a real image 2I . 
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Fig. (1): To locate the image of a lens, the image at 1I  formed by the first 

surface is used as the object for the second surface. The final image is at 2I  
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 Using Eq. (??) and assuming 1n1   because the lens is 

surrounded by air, we find that the image formed by surface 1 

satisfies the equation 
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Now we apply Eq. (??) to surface 2, taking nn1   and 1n2  . 

That is, light approaches surface 2 as if it had come from 1I . 

Taking 2p  as the object distance and 2q  as the image distance 

for surface 2 gives 
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But tqp 1  , where t is the thickness of the lens. 

(Remember 1q  is a negative number and 2p  must be positive by 

our sign convention.) For a thin lens, we can neglect t. In this 

approximation and from Fig. (1), we see that 12 qp  . Hence, 

Eq. (2) becomes 
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Adding Eqs. (1) and (3), we find that 
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For the thin lens, we can omit the subscripts on 1p  and 2q  in Eq. 

(4) and call the object distance p and the image distance q, as in 

Fig. (2). Hence, we can write Eq. (4) in the form 
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This equation relates the image distance q of the image formed 

by a thin lens to the object distance p and to the thin lens 

properties (index of refraction and radii of curvature). It is valid 

only for paraxial rays and only when the lens thickness is small 

relative to 1R  and 2R .  
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Fig. (2): The biconvex lens. 
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 We now define the focal length f of a thin lens as the 

image distance that corresponds to an infinite object distance, as 

we did with mirrors. According to this definition and from Eq. 

(5), we see that as p , fq  ; therefore, the inverse of the 

focal length for a thin lens is 
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This equation is called the lens makers' equation because it 

enables f to be calculated from the known properties of the lens. 

It can be used to determine the values of 1R  and 2R  needed for a 

given index of refraction and desired focal length. 

 Using Eq. (6), we can write Eq. (5) in an alternate form 

identical to Eq. (??) for mirrors: 
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 A thin lens has two focal points, corresponding to incident 

parallel light rays traveling from the left or right. This is 

illustrated in Fig. (3) for biconvex lens (converging, positive f ) 
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and a biconcave lens (diverging, negative f ). Table (1) gives the 

complete sign conventions for lenses. 

 

Table (1): Sign convention for lenses 

p is   if the object is in front of the lens. 

p is - if the object is in back of the lens. 

q is   if the image is in back of the lens. 

q is - if the image is in front of the lens. 

1R  and  2R  are   if the center of curvature is in back of the lens. 

1R  and  2R  are - if the center of curvature is in front of the lens. 

 

Note that the sign conventions for thin lenses are the same for 

refracted surfaces. Applying these rules to a converging lens, we 

see that when fp  , the quantities p, q, and 1R  are positive and 

2R  is negative. Therefore, when a converging lens forms a real 

image from a real object, p, q, and f are all positive. For a 

diverging lens, p and 2R  are positive, q and 1R  are negative, and 

so f is negative for a divergence lens. 
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 )أ( ارسم مسارات الأشعة فى الميكروسكوب المركب واستنتج معامل التكبير الكمى. .5

 --------------------------الحل  ------------------------
Greater magnification can be achieved by combining two lenses 

in a device called a compound microscope, a schematic diagram 

of which is shown in Fig. (7). It consists of an objective lens that 

has a very short focal length cmfo 1 , and an eyepiece lens 

Fig. (3): The object and image focal point of (a) the biconvex lens and 

(b) the biconcave lens. 
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having a focal length, ef , of a few centimeters. The two lenses 

are separated by a distance L, where L is much greater than 

either of  or ef . The object, which is placed just to the left of the 

focal point of the objective, forms a real, inverted image at 1I , 

which is at or close to the focal point of the eyepiece. The 

eyepiece, which serves as a simple magnifier, produces at 2I  an 

image of the image at 1I , and this image at 2I  is virtual and 

inverted. The lateral magnification, 1M , of the first image is 

11 p/q . Note from Fig. (7) that 1q  is approximately equal to L, 

and recall that the object is very close to the focal point of the 

objective; thus, ofp 1 . This gives a magnification for the 

objective of 

 
of

L
M 1  

 The angular magnification of the eyepiece for an object 

(corresponding to the image at 1I ) placed at the focal point of 

the eyepiece is found from Eq. (5) to be 
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 The overall magnification of the component microscope is 

defined as the product of the lateral and angular magnifications: 
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The negative sign indicates that the image is inverted. 

 

 

 

 

 

Fig. (7): Diagram of the compound microscope 
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 .لمرايااستنتج معادلة جاوس فى ا)أ(  .6

 --------------------------الحل  ------------------------
We can us the geometry shown in Fig. (5) to calculate the image 

distance q from a knowledge of the object distance p and the 

mirror radius of curvature, R. By convention, these distances are 

measured from point V. We assume that the object at point O. 

Therefore, any ray leaving O is reflected at the spherical surface 

and focus at a point I, the image point. Let us proceed by 

considering the geometric construction in Fig. (5), which shows 

a single ray leaving point O and focusing at point I.  

 

Fig. (5): The image formed by a spherical concave mirror 

where the object O lies outside the center of curvature, C. 
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We assume the fact that an exterior angle of any triangle equals 

the sum of the two opposite interior angles. Applying this to the 

triangles OPC and OPI gives: 

4̂1̂2̂  ,          (1) 

5̂2̂3̂  .          (2) 

From Eqs. (1) and (2) 
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From the triangles in Fig. (5), we note that: 
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The substitution in Eq. (3) gives 
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This equation is called the mirror equation. If the object is very 

far from the mirror, p can be said to approach infinity, then 
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0
p

1
 , and we see from Eq. (6) that 

2

R
q  . That is, when the 

object is very far from the mirror, the image point is halfway 

between the center of the curvature and the center of the mirror, 

as in Fig. (6). The rays are essentially parallel in this figure and 

we call the image point in this special case the focal point, F, 

and the image distance the focal length, f, where 
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The mirror equation can be expressed in terms of the focal 

length: 
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تصميم مجموعة من عدستين منفصمتين خالية تماما من الزيغ  كيف يمكنك )ب(  .6     
 الموني

 --------------------------الحل  ------------------------
It is possible to make an achromatic combination of two lenses 

of the same material and separated by a finite distance. Suppose 

two lenses of focal lenses 1f , 2f  and mean refractive index n  

are situated a distance x  apart. The equivalent focal length of 

the combination is given by 
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Fig. (6): Light rays from infinity reflect from a concave 

 mirror through the focal point F. 
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or 
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where 











21

1
R

1

R

1
)1n(P ,       (3) 











43

2
R

1

R

1
)1n(P ,       (4) 

By partial differentiation of Eqs. (2) and (4), we get 
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By substituting from Eq. (6) in Eq. (5), we get 
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From the last equation we get 
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Thus, we get an achromatic combination if the two lenses are 

separated by a distance equal to half the sum of their focal 

lengths. 

 

 

 

 


