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Consider a lens having an index of refraction n and two

spherical surfaces of radii of curvature R;and R,, as in Fig. (1).
An object is placed at point O at a distance p, in front of surface
1. For this example, p, has been chosen so as to produce a
virtual image |, to the left lens. This image is then used as the

object for surface 2, which results in a real image 1, .
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Fig. (1): To locate the image of a lens, the image at |1 formed by the first

surface is used as the object for the second surface. The final image is at | 2




Using Eq. (??) and assuming n, =1 because the lens is

surrounded by air, we find that the image formed by surface 1
satisfies the equation

1 n n-1
—F—=

p, a9 R |

1)

Now we apply Eqg. (??) to surface 2, taking n, =n and n, =1.
That is, light approaches surface 2 as if it had come from |1,.
Taking p, as the object distance and g, as the image distance

for surface 2 gives

1 n 1-n
—t— =

P, 0y R, |

(2)

But p =—qg,+t, where t is the thickness of the lens.

(Remember q, is a negative number and p, must be positive by

our sign convention.) For a thin lens, we can neglect t. In this

approximation and from Fig. (1), we see that p, =—q,. Hence,

Eq. (2) becomes

(3)

Adding Eqgs. (1) and (3), we find that
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For the thin lens, we can omit the subscripts on p, and g, in Eq.
(4) and call the object distance p and the image distance g, as in

Fig. (2). Hence, we can write Eq. (4) in the form

1 1 1 1
pram-tg g ©

This equation relates the image distance g of the image formed
by a thin lens to the object distance p and to the thin lens
properties (index of refraction and radii of curvature). It is valid
only for paraxial rays and only when the lens thickness is small

relative to R, and R,.
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Fig. (2): The biconvex lens.




We now define the focal length f of a thin lens as the
image distance that corresponds to an infinite object distance, as
we did with mirrors. According to this definition and from Eq.

(5), we see that as p — o, q— T ; therefore, the inverse of the

focal length for a thin lens is

1 1 1
t-o-a-a ) ©

This equation is called the lens makers' equation because it
enables f to be calculated from the known properties of the lens.
It can be used to determine the values of R, and R, needed for a
given index of refraction and desired focal length.

Using Eqg. (6), we can write Eg. (5) in an alternate form

identical to Eq. (??) for mirrors:

Tt ©

A thin lens has two focal points, corresponding to incident
parallel light rays traveling from the left or right. This is

illustrated in Fig. (3) for biconvex lens (converging, positive f)



and a biconcave lens (diverging, negative f ). Table (1) gives the

complete sign conventions for lenses.

Table (1): Sign convention for lenses

p is + if the object is in front of the lens.
p is - if the object is in back of the lens.
g is + if the image is in back of the lens.
q is - if the image is in front of the lens.

R, and R, are + if the center of curvature is in back of the lens.

R, and R, are - if the center of curvature is in front of the lens.

Note that the sign conventions for thin lenses are the same for
refracted surfaces. Applying these rules to a converging lens, we
see that when p > f, the quantities p, g, and R, are positive and
R, is negative. Therefore, when a converging lens forms a real
image from a real object, p, q, and f are all positive. For a
diverging lens, p and R, are positive, g and R, are negative, and

so f is negative for a divergence lens.
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Fig. (3): The object and image focal point of (a) the biconvex lens and
(b) the biconcave lens.

S Sl Jalaa giiiady oS pal) GisSig Saal) B Al s aw) (1) L0

Greater magnification can be achieved by combining two lenses
in a device called a compound microscope, a schematic diagram
of which is shown in Fig. (7). It consists of an objective lens that

has a very short focal length f, <lcm, and an eyepiece lens




having a focal length, f_, of a few centimeters. The two lenses
are separated by a distance L, where L is much greater than
either f, or f,. The object, which is placed just to the left of the
focal point of the objective, forms a real, inverted image at |,

which is at or close to the focal point of the eyepiece. The
eyepiece, which serves as a simple magnifier, produces at 1, an
image of the image at I, and this image at I, is virtual and
inverted. The lateral magnification, M,, of the first image is
—q, / p,. Note from Fig. (7) that g, is approximately equal to L,
and recall that the object is very close to the focal point of the
objective; thus, p, = f,. This gives a magnification for the

objective of

The angular magnification of the eyepiece for an object
(corresponding to the image at 1) placed at the focal point of

the eyepiece is found from Eq. (5) to be



The overall magnification of the component microscope is

defined as the product of the lateral and angular magnifications:

M =M, m, =—H?j ©)

The negative sign indicates that the image is inverted.
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Fig. (7): Diagram of the compound microscope
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We can us the geometry shown in Fig. (5) to calculate the image
distance g from a knowledge of the object distance p and the
mirror radius of curvature, R. By convention, these distances are
measured from point V. We assume that the object at point O.
Therefore, any ray leaving O is reflected at the spherical surface
and focus at a point |, the image point. Let us proceed by
considering the geometric construction in Fig. (5), which shows

a single ray leaving point O and focusing at point I.
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Fig. (5): The image formed by a spherical concave mirror
where the object O lies outside the center of curvature, C.




We assume the fact that an exterior angle of any triangle equals

the sum of the two opposite interior angles. Applying this to the

triangles OPC and OPI gives:

3-i+d,
3=2+5.
From Egs. (1) and (2)

A=2_-1 and 5=3-2

From the law of reflection 4 =5. So

A A A A

2—-1=3-2
or
3+1=2(2).
From the triangles in Fig. (5), we note that:
tanizL, tan?::L, and
p—d q-d

The substitution in Eq. (3) gives

h h (h)
+ =2 ——
p—-d g-d R-d

or

1 1 2
— =
P 9 R

(1)
(2)

(3)

tan2A=L
R—-d

(4)

This equation is called the mirror equation. If the object is very

far from the mirror, p can be said to approach infinity, then



izO, and we see from Eq. (6) that g zg That is, when the

p

object is very far from the mirror, the image point is halfway
between the center of the curvature and the center of the mirror,
as in Fig. (6). The rays are essentially parallel in this figure and
we call the image point in this special case the focal point, F,

and the image distance the focal length, f, where

()

=2
2

The mirror equation can be expressed in terms of the focal

length:

Snal ©)
g

AR



Y

Y

Y

[
L

N
/

Fig. (6): Light rays from infinity reflect from a concave
mirror through the focal point F.
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It is possible to make an achromatic combination of two lenses
of the same material and separated by a finite distance. Suppose

two lenses of focal lenses f,, f, and mean refractive index n

are situated a distance x apart. The equivalent focal length of

the combination is given by

R e LA (1)
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or

P=P,+P,—xRP,, (2)
where
1 1
Plz(n—l)(E—R—zj’ 3)
1 1
Pzz(n—l)(R—g—R—J, (4)

By partial differentiation of Egs. (2) and (4), we get
dP, +dP, — xPF, dP, — xR, dP, =0, (5)

and

dP,= " dn and dP,= 2
n-1 n-1

dn, (6)

By substituting from Eq. (6) in Eqg. (5), we get

il dn+ P dn— XRh dn—ﬂdnzo
(n-1) (n-1) (n-1) (n-1)

or
P, + P, —2xPP, =0, (7)

From the last equation we get

N N I R (8)
2 PR P
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Thus, we get an achromatic combination if the two lenses are
separated by a distance equal to half the sum of their focal

lengths.
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