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1. Prove the following relation for the occupation number in  due to 

Boltzmann distribution 
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------------------------------- Solution --------------------------------- 

Let the number of allowed states associated with the energy i  be ig . 

Let us first calculate the number of ways of putting 1n  particles of N 

particles in one box, then 2n  out of 1nN   in second, and so on until we 

have exhausted all of the particles. The number of ways of choosing 1n  

particles out of N particles is given by  
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and the number of choosing 2n  out of 1nN   is: 
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and the number of ways of achieving this arrangement is 
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To obtain the most probable distribution, we maximize Eq. (3) with 

0dN  : 
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multiply Eq. (4) by 1  and Eq. (5) bt B  and add the resulting 

equations to each other: 
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Since in  is vary independent,  
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Solving Eq. (7) for in  gives 
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2. (a) Find the relation between the partition function Z and 

thermodynamic functions U, S, and F. 

-------------------------------- Solution --------------------------------- 

(a) Relation between Z and U 

Since 
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differentiate Z with respect to T, holding V constant, 
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It follow that 
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and U may be calculated once lnZ is known as a function of T and V. 

 

(b) Relation between Z and S 

 The entropy S is related to the order or distribution of the particles, 

through the relation: 
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and S may be calculated once lnZ is known as a function of T and V. 

 

 

(c) Relation between Z and F 

The property of the system is defined by its Helmholtz function F which is 

given by: 
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This equation can be evaluated in terms of the partition function Z. By 

using the entropy S, Eq. (8), we get 
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and F may be calculated once lnZ is known as a function of T and V. 
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2. Prove the following relation for the occupation number in  due to 

Fermi-Dirac statistics, 
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---------------------------------- Solution --------------------------------------- 

Let the number of allowed states associated with the energy i  be ig . 

Let us first calculate the number of ways of putting 1n  particles of N 

particles in one box, then 2n  out of 1nN   in second, and so on until we 

have exhausted all of the particles. The number of ways of choosing 1n  

particles out of N particles is given by  
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To obtain the most probable distribution, we maximize Eq. (3) with 

0dN  : 
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multiply Eq. (4) by   and Eq. (5) bt B  and add the resulting 

equations to each other: 
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Solving Eq. (7) for in  gives 
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