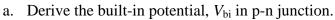
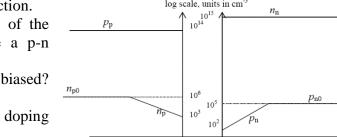
**Benha** University Faculty of science Physics department 2019/2020




Semiconductor PHY 451 4<sup>th</sup> Year Level Time: 3 Hours


## Answer only 5 questions:

[each question 5x16 mark=80 marks]

- 1- .
  - a. By using the periodic table, could u explain how the semiconductors compounds materials are bonding?
  - b. If the energy spread of a band in solid state is of the order 1 eV or less. What are the consequences, regarding the temperature at which an experiment to determine the energy-level separation, must be carried out?
  - c. Which band can partake in electrical conduction, complete fully, complete empty or partial occupy? And why?
- 2-
  - A 5- $\Omega$  resistor is to be made from a bar-shaped piece of n-type Si. The bar has a cross sectional area a. of  $10^{-2}$  cm<sup>2</sup>. The silicon is doped with  $N_{\rm D} = 5 \times 10^{17}$  cm<sup>-3</sup> and  $N_{\rm A} = 4 \times 10^{17}$  cm<sup>-3</sup>. Determine the length of the silicon bar.  $[\mu n = 300 \text{ cm}^2/\text{Vs}]$
  - b. Calculate the velocity of an electron in a piece of n-type silicon due to its thermal energy at RT and due to the application of an electric field of 1000 V/m across the piece of silicon.  $[m_e^* = 1.18m_o]$  and  $m_0 = 9.11 \times 10^{-31}$  Kg, k=1.38×10<sup>-23</sup>m<sup>2</sup>Kg s<sup>-2</sup> K<sup>-1</sup> and  $\mu_e = 0.15$  m<sup>2</sup>/(V.S)]
- 3-
- a. Define Domain in semiconductors and Negative differential resistance
- b. What is the Gunn diode? How it works?
- 4-



- b. The figure below is a dimensioned plot of the steady state carrier concentration inside a p-n junction diode at 300 K.
  - i. Is the diode forward biased or reverse biased? Explain.



log scale, units in cm-3

- ii. What are the p-side and n-side concentrations? iii. Determine the applied voltage,  $V_{\rm A}$ .
- 5- An abrupt silicon p-n junction diode has the following characteristics.

P-side: N-side:  $N_{\rm A} = 10^{16} \, {\rm cm}^{-3}$  $N_{\rm D} = 4 \times 10^{16} \, {\rm cm}^{-3}$  $\mu_p = 350 \text{ cm}^2/\text{Vs}$  $\mu_n = 1000 \text{ cm}^2/\text{Vs}$  $\tau_{\rm p} = 10^{-7} {\rm sec}$  $\tau_{\rm p} = 10^{-7} {\rm sec}$  $\dot{A}$ rea  $A = 10^{-2} \, \text{cm}^2$ 

Calculate the following (a-d) quantities:

- a) Reverse saturation hole current component.
- b) Reverse saturation electron current component.
- c) Minority carrier concentrations at the edge of the depletion layer,  $n_p(0)$  and  $p_n(0)$ , for a forward voltage of 0.6 V.
- d) Electron and hole current for the bias condition of (c).
- 6- Derive the Depletion Capacitance for p-n junction.

$$J_{p} = \mu_{p} \left( p \frac{dE_{i}}{dx} - kT \frac{dp}{dx} \right) = 0 \quad (3)$$
$$p = n_{i} \exp\left(\frac{E_{i} - E_{f}}{kT}\right) \Longrightarrow \frac{dp}{dx} = \frac{p}{kT} \left(\frac{dE_{i}}{dx} - \frac{dE_{f}}{dx}\right)$$
$$J_{p} = \mu_{p} p \frac{dE_{f}}{dx} = 0 \quad (4)$$

we conclude that  $\frac{dE_f}{dx} = 0$  which states that the Fermi Level is a CONSTANT at equilibrium.  $J_n = \mu_n n \frac{dE_f}{dx} = 0$  (5)

With my best wishes