

> جامعة بنها - كلية العلوم - قسم الرياضيات لطلاب المستوى الثانى ترم تخرج

يوم الامتحان: الاحد 19 / 5 / 2019 م

المادة : رياضيات متقطعة (225 ر)

الممتحن: د . / محمد السيد عبدالعال عبدالغنى

مدرس بقسم الرياضيات بكلية العلوم

اسئله + نموذج إجابه

ورقة كاملة

جامعة بنها كلية السعلوم قسم الرباضيات

رياضيات متقطعة (225 ر) لطلاب المستوى الثانى

Answer the following questions: (80 marks)

أجب على الاسئله التاليه (الدرجة الكلية 80 درجة)

Question 1.

السؤال الأول (30 درجة) :-

- 1. **Define** a Boolean algebra $(B, \oplus, *, \bar{}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that:** There is only one element $\overline{b_1} \in B$ such that $b_1 \oplus \overline{b_1} = 1$ and $b_1 * \overline{b_1} = 0$.
- 2. For any propositions p, q, r, **Prove that:**
 - I. $(\overline{p} \vee \overline{q}) \equiv (p \vee \overline{q}),$
 - II. $[(p \rightarrow q) \land (p \lor r)] \vdash (q \lor r)$.
- 3. A relation \equiv_5 on the set Z is defined by $a \equiv_5 b$ if and only if a-b=5k for some $k \in \mathbb{Z}$, show that \equiv_5 is an equivalent relation and describe the equivalence classes [3], [-1].

Question 2.

السؤال الثاني (30 درجة)

- **1-** Let *A* , *B* , *C*, *D* be sets, **prove that:**
 - I. $P(A) \cap P(B) = P(A \cap B)$
 - II. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - III. $A \cup (B-C) = (A \cup B) (\overline{A} \cap C)$
- 2- **draw** diagram to represent the graph whose adjacency matrix is given below. **Write down** the degree of each vertex, and **state** the graph is (a) *simple*; (b) *regular*; (c) *Eulerian*.?

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 2 & 1 & 3 & 0 & 1 \\ 0 & 3 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 & 2 \\ 1 & 1 & 1 & 2 & 1 \end{pmatrix}$$

3- **Design** a logic network for the following so that the output is described by the following Boolean expression: $x_1x_3 \oplus \overline{x_1} \oplus x_2 \overline{x_3}$.

Question 3.

السؤال الثالث (20 درجة):

1. **Define** the complete graph K_n , the complete bipartite graph $K_{r,s}$ and Eulerian path, and for **which values** of n, r, s, the graphs K_n , $K_{r,s}$ are **Eulerian**?

جامعة بنها كلية السعلوم قسم الدياضيات

2. **Show** the following function is a bijection and **find** its inverse:

$$f: R \to R, f(x) = (5x - 3)^3 \forall x \in R.$$

3. **Define** a switching function for the following system of switches:

انتهت أسئلة

.....

مع أطيب تمنياتي بالتوفيق والنجاح د. محمد السيد عبدالعال د.

جامعة بنسها كلية السعلوم قسم الرياضيات

نموذج اجابه لأمتحان رياضيات متقطعة (225 ر) لطلاب المستوى الثاني

(الدرجة الكلية 80 درجة)

اجابة السؤال الأول (30 درجة) :-

1. **Define** a Boolean algebra $(B, \oplus, *, \overline{}, 0, 1)$ and for all $b_1, b_2 \in B$, **prove that**: There is only one element $\overline{b_1} \in B$ such that $b_1 \oplus \overline{b_1} = 1$ and $b_1 * \overline{b_1} = 0$.

الحــــل

<u>Boolean algebra</u> consists of a set *B* together with three operations defined on that set. These are:

- (a) a binary operation denoted by \bigoplus referred to as the **sum**;
- (b) a binary operation denoted by * referred to as the **product**;
- (c) an operation which acts on a single element of B, denoted by -, where, for any element $b \in B$, the element $b^- \in B$ is called the **complement** of b^- (An operation which acts on a single member of a set S and which results in a member of S is called a **unary operation**.) The following axioms apply to the set B together with the operations \bigoplus , * and .
- B1. Distinct identity elements belonging to B exist for each of the binary operations \bigoplus and * and we denote these by $\mathbf{0}$ and $\mathbf{1}$ respectively. Thus we have

$$b \oplus \mathbf{0} = \mathbf{0} \oplus b = b$$

 $b * \mathbf{1} = \mathbf{1} * b = b$ for all $b \in B$.

for all $a, b, c \in B$.

$$(a*b)*c = a*(b*c)$$

 $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

- B2. The operations \bigoplus and * are associative, that is
- B3. The operations \bigoplus and * are commutative, that is

$$a \oplus b = b \oplus a$$

$$a * b = b * a$$
 for all $a, b \in B$.

B4. The operation \bigoplus is distributive over * and the operation * is distributive over \bigoplus , that is

$$a \bigoplus (b * c) = (a \bigoplus b) * (a \bigoplus c)$$

$$a * (b \oplus c) = (a * b) \oplus (a * c)$$
 for all $a, b, c \in B$.

جامعة بنها كلية السعلوم قسم الرباضيات

B5. For all $b \in B$, $b \oplus .b = 1$ and b * .b = 0.

$$(b_1 \bigoplus b_2) \bigoplus (\overline{b_1} * \overline{b_2}) = [(b_1 \bigoplus b_2) \bigoplus \overline{b_1}] * [(b_1 \bigoplus b_2) \bigoplus \overline{b_2}]$$
 (axiom B4)

$$= [\overline{b_1} \bigoplus (b_1 \bigoplus b_2)] * [(b_1 \bigoplus b_2) \bigoplus \overline{b_2}]$$
 (axiom B3)

$$= [(\overline{b_1} \bigoplus b_1) \bigoplus b_2] * [b_1 \bigoplus (b_2 \bigoplus \overline{b_2})]$$
 (axiom B2)

$$= (1 \bigoplus b_2) * (b_1 \bigoplus 1)$$
 (axiom B5)

$$= 1 * 1$$
 (theorem 9.4)

$$= 1$$
 (axiom B1).

We have proved that $(b_1 \oplus b_2) \oplus \overline{b_1} * \overline{b_2}) = 1$ so that $\overline{b_1} * \overline{b_2}$ is the complement of $b_1 \oplus b_2$, i.e. $(b_1 \oplus b_2) = \overline{b_1} * \overline{b_2}$. That $(b_1 * b_2) = \overline{b_1} \oplus \overline{b_2}$ follows from the duality principle.

2. For any propositions p, q, r, **Prove that:**

- I. $(\overline{p \vee q}) \equiv (p \vee \overline{q}),$
- II. $[(p \rightarrow q) \land (p \lor r)] \vdash (q \lor r)$.

الحسا

I. $(\overline{p} \vee \overline{q}) \equiv (p \vee \overline{q})$

p	q	\overline{q}	$p \vee q$	$\overline{p \vee q}$	$p \vee \overline{q}$
1	1	0	0	1	1
1	0	1	1	0	0
0	1	0	1	0	0
0	0	1	0	1	1

I. $[(p \rightarrow q) \land (p \lor r)] \vdash (q \lor r)$

p	<u>q</u>	<u>r</u>	$p \rightarrow q$	17	$(p \to q) \land (p \lor r)$	$q \vee r$	$[(p \to q) \land (p \lor r)] \to (q \lor r)$
1	1	1	<u>1</u>	1	1	1	1
1	1	<u>0</u>	1	1	1	1	1
1	<u>0</u>	1	<u>0</u>	1	<u>0</u>	1	1
1	<u>0</u>	<u>0</u>	<u>0</u>	1	<u>0</u>	<u>0</u>	1

بسمعة بنسها كلية السعلوم قسم الرياضيات

==== ·G.3						<u> </u>	
0	1	1	1	1	1	1	1
0	1	0	1	<u>0</u>	<u>0</u>	1	1
0	0	1	1	1	1	1	1
<u>0</u>	0	0	1	<u>0</u>	<u>0</u>	<u>0</u>	1

3. A relation \equiv_5 on the set Z is defined by $a \equiv_5 b$ if and only if a-b=5k for some $k \in Z$, show that \equiv_5 is an equivalent relation and **describe** the equivalence classes [3], [-1].

In this case $a \equiv_5 b$ if and only if a - b = 5k for some integer k; that is, if and only if there exists an integer k such that a = 5k + b.

Firstly, R is reflexive since a-a = 50,

Secondly, if $a \equiv_5 b$ i.e. a-b =5k then b-a = -5k so implies $b \equiv_5 a$ therefore \equiv_5 is symmetric.

Thirdly, suppose $a \equiv_5 b$ and $b \equiv_5 c$; then there exist integers k such that a-b = 5k and b-c = 5k₁.

Combining these two equations gives a-c = $5(k-k_1)$ therefore $a \equiv_5 c$

where (k-k1) is an integer. Thus $a \equiv_5 b$ and $b \equiv_5 c$ implies $a \equiv_5 c$ so \equiv_5 is transitive.

Therefore

$$[p] = \{q \in z : q = 5k + p, \text{ for some } k \in z\}.$$

$$[3] = \{q \in z : q = 5k + 3, \text{ for some } k \in z\}.$$

$$[-1] = \{q \in z : q = 5k + -1, \text{ for some } k \in z\}.$$

Question 2.

I.
$$P(A) \cap P(B) = P(A \cap B)$$

Let $X \in P(A) \cap P(B)$. Then $X \in P(A)$ and $X \in P(B)$. Hence $X \subseteq A$ and either

 $X \subseteq B$ Therefore $X \subseteq A \cap B$. It follows that $X \in P(A \cap B)$

We have shown that if $X \in P(A) \cap P(B)$ then $X \subseteq P(A \cap B)$ Therefore

$$P(A) \cap P(B) \subseteq P(A \cap B)$$

Secondly we must show that $P(A \cap B) \subseteq P(A) \cap P(B)$

Let $X \in P(A \cap B)$ Then $X \subseteq A \cap B$ so $X \subseteq A$ and $X \subseteq B$ Hence $X \in P(A)$ and either $X \in P(B)$. Therefore $X \in P(A) \cap P(B)$.

Therefore $(P(A \cap B) \subseteq P(A) \cap P(B)$

جامعة بنسها كلية السعلوم قسم الرياضيات

Finally, since we have shown that each set is a subset of the other, we may conclude $P(A) \cap P(B) = P(A \cap B)$

$$\prod A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Let $(a,x) \in A \times (B \cap C)$. By the definition of the Cartesian product, this means that $a \in A$ and $x \in (B \cap C)$. Thus $x \in X$, so (a,x) belongs to $A \times B$; and $x \in C$, so (a,x) belongs to $A \times C$ as well. Therefore $(a,x) \in (A \times B) \cap (A \times C)$, which proves that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. To prove the subset relation the other way round as well, let

 $(a, x) \in (A \times B) \cap (A \times C).$

Then $(a, x) \in (A \times B)$, so $a \in A$ and $x \in B$; and $(a, x) \in (A \times C)$, so $a \in A$ and $x \in C$. Therefore $a \in A$ and $x \in (B \cap C)$ which means that the ordered pair (a, x) belongs to the Cartesian product $A \times (B \cap C)$. Hence $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

The conclusion that the sets A × (B \cap C) and (A × B) \cap (A × C) are equal now Then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

III.
$$A \cup (B - C) = (A \cup B) - (\overline{A} \cap C)$$

 $A \cup (B - C) = A \cup (B \cap \overline{C}) = (A \cup B) \cap (A \cup \overline{C}) = (A \cup B) - (\overline{A \cup \overline{C}})$
 $= (A \cup B) - (\overline{A \cup \overline{C}}) = (A \cup B) - (\overline{A} \cap C)$

1. **draw** diagram to represent the graph whose adjacency matrix is given below. **Write down** the degree of each vertex, and **state** the graph is (a) *simple*; (b) *regular*; (c) *Eulerian*.?

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 2 & 1 & 3 & 0 & 1 \\ 0 & 3 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 & 2 \\ 1 & 1 & 1 & 2 & 1 \end{pmatrix}$$

الحـــــل

جامعة بنها كلية السعلوم قسم الرباضيات

the graph is not simple; not regular; not Eulerian

2. **Design** a logic network for the following so that the output is described by the following Boolean expression: $x_1x_3 \oplus \overline{x_1} \oplus x_2\overline{x_3}$.

أجابة السؤال الثالث (20 درجة) :-

1. **Define** the complete graph K_n , the complete bipartite graph $K_{r,s}$ and Eulerian path, and for which values of n, r, s, the graphs K_n , $K_{r,s}$ are Eulerian?

A graph is connected if, given any pair of distinct vertices, there exists a path connecting them.

A graph in which every vertex has the same degree r is called regular (with degreer) or simply r-regular.

A graph is Eulerian if the sum of all entry in any row or in any column of its adjacency matrix is even.

A complete graph is a simple graph in which every pair of distinct vertices is joined by an edge. A complete bipartite graph is a bipartite graph such that every vertex of V_1 is joined to every vertex of V_2 by a unique edge.

An Eulerian path in a graph G is a closed path which includes every edge of G. A graph is said to be Eulerian if it has at least one Eulerian path. The complete graph K_n is (n-1)-regular-every vertex has degree n-1. Since it is connected, K_n is Eulerian if and only if n is odd (so that n - 1 is even).

A complete bipartite graph $K_{r,s}$ is Eulerian if and only if r,s is even.

2. **Show** the following function is a **bijection** and find its **inverse**:

$$f: R \rightarrow R, f(x) = (5x-3)^3 \ \forall x \in R.$$

To show that f is an injection we prove that, for all real numbers x and y, f(x) = f(y) implies x = y. Now f(x) = f(y)

$$(5x-3)^3 = .(5y-3)^3 \implies x = y \text{ so } f \text{ is injective.}$$

To show that f is a surjection, let y be any element of the codomain f. We need

to find
$$x \in R$$
 such that $f(x) = y$. Let $x = \frac{\sqrt[3]{y} + 3}{5}$. Then $x \in R$ and

$$f(x) = [5\frac{\sqrt[3]{y+3}}{5} - 3]^3 = y$$
 so f is surjective.

To find f^{-1} we simply use its definition: if y = f(x) then $x = f^{-1}(y)$.

Now y = f(x)

$$\Rightarrow y = (5x - 3)^3 \Rightarrow x = \frac{\sqrt[3]{y} + 3}{5}$$

 $x = f^{-1}(y) = \frac{\sqrt[3]{y} + 3}{5}$. Therefore the inverse function is $f^{-1}: R \rightarrow R, f^{-1}(y) = \frac{\sqrt[3]{y} + 3}{5}$.

3. **Define** a switching function for the following system of switches:

$$f(x_1, x_2, x_3) = x_1[x_2(x_1 \oplus x_3) \oplus x_3x_2]$$