

جامعة بنها - كلية العلوم - قسم الرياضيات

لطلاب المستوى الثاني

يوم الامتحان: الاحد 13 / 1 / 2019 م

المادة: رياضيات متقطعة (225 ر)

الممتحن: د . / محمد السيد عبدالعال عبدالغنى

مدرس بقسم الرياضيات بكلية العلوم

اسئله + نموذج إجابه

ورقة كاملة

جـــامعة بنــــها كلـية الـــــعلوم قسـم الرياضيات

رياضيات متقطعة (225 ر) لطلاب المستوى الثاني

أجب على الاسئله التاليه (الدرجة الكلية 80 درجة)

السؤال الأول (25 درجة):

1- **Show** the following function is a **bijection** and find its **inverse**:

$$f: R - \{5\} \to R - \{2\}, f(x) = \frac{2x+1}{x-5} \ \forall x \in R - \{5\}.$$

- 2- Let $A = \{1, 2, 3, 4, 5\}$ and $R = \{(a, b) : b \le a^2\}$ be a relation on A. List the elements of R, and write down its binary matrix. Determine which of the properties, reflexive, symmetric, transitive the relation R is satisfied.
- **3-** For all propositions p, q, r, **Prove that:**
 - I. $(\overline{p} \wedge q) \vee (\overline{p \vee q}) \equiv \overline{p}$ by laws
 - **II.** $[(p \lor q) \to \overline{r}] \lor (\overline{p} \lor \overline{q}).$
- 4- draw the diagram of a system of switches for which it is the switching function: $f(x_1, x_2, x_3) = x_1[x_2(x_1 \oplus x_3) \oplus x_3x_2]$

السؤال الثاني (30 درجة) :-

- 1- Let $A = \{1, 2, 3\}$, $B = \{1, 2\}$ and P(A) is the power set of A. **Determine** whether each of the following is true or false and give a brief justification. (i) $B \in P(A)$, (ii) $B \in A$, (iii) $B \subseteq P(A)$, (iv) $A \subseteq P(A)$.
- 2- Let $(B, \oplus, *, \bar{b}_1, 0, 1)$ be a Boolean algebra and for all $b_1, b_2 \in B$, prove that: There is only one element $\overline{b_1} \in B$ such that $b_1 \oplus \overline{b_1} = 1$ and $b_1 * \overline{b_1} = 0$.
- 3- Let A, B, C are sets, prove that:

I.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

II.
$$A - (B \cap C) = (A - B) \cup (A - C)$$
 by definitions

4- **Defined** the complete graph K_n , the complete bipartite graph $K_{r,s}$ and Eulerian path, and for which values of n, r, s, the graphs $K_n, K_{r,s}$ are Eulerian?

جامعة بنها كلية السعلوم قسم الرياضيات

السؤال الثالث (25 درجة) :-

- 1- Let $f: A \to B$ and $g: B \to C$ be two functions **prove that**: **if** f and g are both injection **then** so, too is $g \circ f$
- 2- **Find** the matrix A^2 , where A be the adjacency matrix, for the following graph: and **write** all edge sequences of length 2 joining v_2 , v_2 .

- 3- A relation \equiv_5 on the set Z is defined by $a \equiv_5 b$ if and only if a b = 5k for some $k \in \mathbb{Z}$, show that \equiv_5 is an equivalent relation and describe the equivalence class [-5].
- 4- Determine the Boolean expression for the output of the following system of gates.

.....

انتهت أسئلة ! Good Luck مع أطيب تمنياتي بالتوفيق والنجاح د. محمد السيد عبدالعال

جـــامعة بنــــها كلـية الـــــعلوم قسـم الرياضيات

نموذج اجابه لأمتحان رياضيات متقطعة (225 ر) لطلاب المستوى الثانى (الدرجة الكلية 80 درجة)

اجابة السؤال الأول (35 درجة) :-

1- **Show** the following function is a **bijection** and find its **inverse**:

$$f: R-\{5\} \to R-\{2\}, f(x) = \frac{2x+1}{x-5} \ \forall x \in R-\{5\}.$$

الحال

To show that f is an injection we prove that, for all real numbers x and y, f(x) = f(y) implies x = y. Now f(x) = f(y)

$$\Rightarrow \frac{2x+1}{x-5} = \frac{2y+1}{y-5}$$
..... $\Rightarrow x = y \text{ so } f \text{ is injective.}$

To show that f is a surjection, let y be any element of the codomain f. We need to find $x \in R-\{5\}$ such that f(x) = y. Let $x = \frac{1+5y}{y-2}$. Then $x \in R-\{5\}$ and

$$f(x) = \left[2\frac{1+5y}{y-2} + 1\right] \div \left[\frac{1+5y}{y-2} - 5\right] = \frac{2+10y+y-2}{y-2} \div \frac{1+5y-5y+10}{y-2} = \frac{11y}{11} = y$$
 so f is surjective.

To find f⁻¹ we simply use its definition: if y = f(x) then $x = f^{-1}(y)$.

Now

$$y = f(x) \Rightarrow y = \frac{2x+1}{x-5} \Rightarrow$$

$$\Rightarrow x = \frac{1+5y}{y-2}$$

$$x = f^{-1}(y) = \frac{1+5y}{y-2}.$$

Therefore the inverse function is f^{-1} : R-{2} \rightarrow R-{5}, $f^{-1}(y) = \frac{1+5y}{y-2}$.

2- Let $A = \{1,2,3,4\}$ and $R = \{(a,b): b \le a^2\}$ be a relation on A. List the elements of R, and write down its binary matrix. Determine which of the properties, reflexive, symmetric, transitive the relation R is satisfied.

جـــامعة بنــــها كلـية الـــــعلوم قسـم الرياضيات

R is reflexive not symmetric, transitive.

-=-=-

3- For all propositions p, q, r, **Prove that:**

I.
$$(\overline{p} \wedge q) \vee (\overline{p \vee q}) \equiv \overline{p}$$
 by laws

II.
$$[(p \lor q) \to \overline{r}] \lor (\overline{p} \lor \overline{q}).$$

$$(\overline{p} \wedge q) \vee \overline{(p \vee q)} \equiv (\overline{p} \wedge q) \vee (\overline{p} \wedge \overline{q}) \equiv \overline{p} \vee (q \wedge \overline{q}) \equiv \overline{p}$$

-=-=-

$$[(p \lor q) \to \overline{r}] \underline{\lor} (\overline{p} \lor \overline{q})$$

p	q	r	\overline{q}	\overline{r}	\overline{p}	$(p \lor q)$	$(p \lor q) \to \overline{r}$	$\overline{p} \vee \overline{q}$	$(p \lor q) \to \overline{r}] \underline{\lor} (\overline{p} \lor \overline{q})$
1	1	1	0	0	0	1	0	0	O
1	1	0	0	1	0	1	1	0	1
1	0	1	1	0	0	1	0	1	1
1	0	0	1	1	0	1	1	1	0
0	1	1	0	0	1	1	0	1	<mark>1</mark>
0	1	0	0	1	1	1	1	1	O
0	0	1	1	0	1	0	1	1	0
0	0	0	1	1	1	0	1	1	0

-=-=-==

1- draw the diagram of a system of switches for which it is the switching function:

$$f(x_1, x_2, x_3) = x_1[x_2(x_1 \oplus x_3) \oplus x_3x_2]$$

جامعة بنها كلية السعلوم قسم الرياضيات

السؤال الثاني (30 درجة) :-

- 1- Let $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Determine whether each of the following is true or false and give a brief justification.
 - $(i) B \in P(A), (ii) B \in A, (iii) A \subseteq P(A), (iv) \emptyset \in P(A).$

- (i) $B \in P(A)$, True: B is a subset of A so B is an element of its power set.
- (ii) $B \in A$, False: B is a set but the elements of A are numbers, so B is not an element of A.
- (iii) $A \subseteq P(A)$, False: the elements of A are numbers whereas the elements of P(A) are sets (namely subsets of A). Hence the elements of A cannot also be elements of P(A), so $A \subseteq P(A)$.
- $(iv) \emptyset \subseteq P(A)$. True: since $\emptyset \subseteq A$. we have $\emptyset \in P(A)$.

2- Let $(B, \oplus, *, \bar{b}_1, 0, 1)$ be a Boolean algebra and for all $b_1, b_2 \in B$, prove that: There is only one element $\overline{b_1} \in B$ such that $b_1 \oplus \overline{b_1} = 1$ and $b_1 * \overline{b_1} = 0$.

Suppose that .b1 and .b2 are both complements of an element b of a Boolean algebra

 $(P(S), \cup, \cap, -, \phi, S) = (B, \bigoplus, *, -, 0, 1)$. This means that

$$b \oplus .b_1 = .b_1 \oplus b = 1$$
, $b \oplus .b_2 = .b_2 \oplus b = 1$
 $b * .b_1 = .b_1 * b = 0$, $b * .b_2 = .b_2 * b = 0$, $.b_{1=}\overline{b_1}$

Thus we have

$$.b1 = .b1 * 1$$
 (axiom B1)
= $.b1 * (b \oplus .b2)$


```
نموذج اجابة امتحان

(ياضيات متقطعة (225 ر)

2019/1/13: التاريخ: 2019/1/13 (axiom B4)

= (.b1 * b) \oplus (.b1 * .b2) (axiom B4)

= 0 \oplus (.b2 * .b1) (axiom B3)

= (.b2 * b) \oplus (.b2 * .b1)

= .b2 * (b \oplus .b1) (axiom B4)

= .b2 * 1

= .b2 (axiom B1).
```

We have shown that .b1 = .b2 and so we can conclude that the complement is unique.

3- Let A, B, C are sets, **prove that:**

I.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

II.
$$A - (B \cap C) = (A - B) \cup (A - C)$$
 by definitions

قسم الرياضيات

I.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Let $(a,x) \in A \times (B \cap C)$. By the definition of the Cartesian product, this means that $a \in A$ and $x \in (B \cap C)$. Thus $x \in X$, so (a,x) belongs to $A \times B$; and $x \in C$, so (a,x) belongs to $A \times C$ as well. Therefore $(a,x) \in (A \times B) \cap (A \times C)$, which proves that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. To prove the subset relation the other way round as well, let $(a,x) \in (A \times B) \cap (A \times C)$.

Then $(a, x) \in (A \times B)$, so $a \in A$ and $x \in B$; and $(a, x) \in (A \times C)$, so $a \in A$ and $x \in C$. Therefore $a \in A$ and $x \in (B \cap C)$ which means that the ordered pair (a, x) belongs to the Cartesian product $A \times (B \cap C)$. Hence $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

The conclusion that the sets A × (B \cap C) and (A × B) \cap (A × C) are equal now -=-=-

II.
$$A-(B\cap C)=(A-B)\cup (A-C)$$

First we show $A - (B \cap C) \subseteq (A - B) \cup (A - C)$.

جامعة بنها كلية السعلوم قسم الرياضيات

Let $x \in A = (B \cap C)$. Then $x \in A$ and $x / \in B \cap C$. Hence $x \in A$ and either $x / \in B$ or $x / \in C$ (or both). Therefore either $x \in A$ and $x / \in B$ or $x \in A$ and $x / \in C$ (or both). It follows that $x \in A - B$ or $x \in A - C$ (or both). Hence $x \in (A - B) \cup (A - C)$. We have shown that if $x \in A - (B \cap C)$ then $x \in (A - B) \cup (A - C)$. Therefore $A - (B \cap C) \subseteq (A - B) \cup (A - C)$. Secondly we must show that $(A - B) \cup (A - C) \subseteq A - (B \cap C)$.

Let $x \in (A - B) \cup (A - C)$. Then $x \in A - B$ or $x \in A - C$ (or both) so $x \in A$ and $x / \in B$ or $x \in A$ and $x / \in C$ (or both). Hence $x \in A$ and either $x / \in B$ or $x / \in C$ (or both) which implies $x \in A$ and $x / \in B \cap C$. Therefore $x \in A - (B \cap C)$. We have shown that if $x \in (A - B) \cup (A - C)$ then $x \in A - (B \cap C)$. Therefore $(A - B) \cup (A - C) \subseteq A - (B \cap C)$. Finally, since we have shown that each set is a subset of the other, we may conclude $(A - B) \cup (A - C) = A - (B \cap C)$.

4- **Defined** the complete graph K_n , the complete bipartite graph $K_{r,s}$ and Eulerian path, and for which values of n, r, s, the graphs $K_n, K_{r,s}$ are Eulerian?

A complete graph is a simple graph in which every pair of distinct vertices is joined by an edge. A complete bipartite graph is a bipartite graph such that every vertex of V_1 is joined to every vertex of V_2 by a unique edge.

An Eulerian path in a graph G is a closed path which includes every edge of G. A graph is said to be Eulerian if it has at least one Eulerian path.

The complete graph K_n is (n-1)-regular—every vertex has degree n-1. Since it is connected,

 K_n is Eulerian if and only if n is odd (so that n-1 is even).

--_-

A complete bipartite graph $K_{r,s}$ is Eulerian if and only if r,s is even.

السوال الثالث (25 درجة) :-

1- Let $f: A \to B$ and $g: B \to C$ be two functions **prove that**: **if** f and g are both injection **then** so, too is $g \circ f$

suppose f and g are injections. Let a, $a_1 \in A$, b = f(a) and $b_1 = f(a_1)$. Then $g \circ f(a) = g \circ f(a_1) \Rightarrow g(f(a)) = g(f(a_1))$ $g(b) = g(b_1)$ $b = b_1$ (since g is injective)

جامعة بنها كلية السعلوم قسم الرياضيات

 $\Rightarrow f(a) = f(a_1) \text{ (since } f(a) = b, f(a_1) = b_1 \Rightarrow)$

$$\Rightarrow a = a_1 \Rightarrow$$
 (since f is injective).

Hence $g \circ f$ is an injection.

=-=-=-=-

2- **Find** the matrix A^2 , where A be the adjacency matrix, for the following graph:

and write all edge sequences of length 2 joining v_2 , v_2 .

الحــــــل

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}, \quad A^2 = \begin{pmatrix} 4 & 3 & 2 & 2 & 3 \\ 3 & 4 & 1 & 3 & 2 \\ 2 & 1 & 2 & 0 & 2 \\ 2 & 3 & 0 & 3 & 1 \\ 3 & 2 & 2 & 1 & 3 \end{pmatrix}$$

 $e_9 e_9$; $e_2 e_2$; $e_5 e_5$; $e_6 e_6$

====-==-

3- A relation \equiv_5 on the set Z is defined by $a \equiv_5 b$ if and only if a - b = 5k for some $k \in \mathbb{Z}$, show that \equiv_5 is an equivalent relation and describe the equivalence class [-5].

الحـــــا

In this case $a \equiv_5 b$ if and only if a - b = 5k for some integer k; that is, if and only if there exists an integer k such that a = 5k + b. Firstly, R is reflexive since a-a = 50,

جامعة بنها كلية السعلوم قسم الرياضيات

Secondly, if $a \equiv_5 b$ i.e. a-b=5k then b-a=-5k so implies $b \equiv_5 a$ therefore \equiv_5 is symmetric. Thirdly, suppose $a \equiv_5 b$ and $b \equiv_5 c$; then there exist integers k such that a-b=5k and $b-c=5k_1$. Combining these two equations gives $a-c=5(k-k_1)$ therefore $a \equiv_5 c$ where $(k-k_1)$ is an integer. Thus $a \equiv_5 b$ and $b \equiv_5 c$ implies $a \equiv_5 c$ so \equiv_5 is transitive.

Therefore

$$[p] = \{q \in z : q = 5k + p, \text{ for some } k \in z\}.$$

$$[-5] = \{q \in z : q = 5k + -5, \text{ for some } k \in z\}.$$

4- Determine the Boolean expression for the output of the following system of gates.

$$(x_1 \oplus x_2)(\overline{x_1} \oplus \overline{x_2}).$$